Step |
Hyp |
Ref |
Expression |
1 |
|
rrnval.1 |
⊢ 𝑋 = ( ℝ ↑m 𝐼 ) |
2 |
|
rrndstprj1.1 |
⊢ 𝑀 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
3 |
|
simpl1 |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐼 ∈ ( Fin ∖ { ∅ } ) ) |
4 |
3
|
eldifad |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐼 ∈ Fin ) |
5 |
|
simpl2 |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐹 ∈ 𝑋 ) |
6 |
|
simpl3 |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐺 ∈ 𝑋 ) |
7 |
1
|
rrnmval |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
8 |
4 5 6 7
|
syl3anc |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
9 |
|
eldifsni |
⊢ ( 𝐼 ∈ ( Fin ∖ { ∅ } ) → 𝐼 ≠ ∅ ) |
10 |
3 9
|
syl |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐼 ≠ ∅ ) |
11 |
5 1
|
eleqtrdi |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) |
12 |
|
elmapi |
⊢ ( 𝐹 ∈ ( ℝ ↑m 𝐼 ) → 𝐹 : 𝐼 ⟶ ℝ ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐹 : 𝐼 ⟶ ℝ ) |
14 |
13
|
ffvelrnda |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
15 |
6 1
|
eleqtrdi |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) |
16 |
|
elmapi |
⊢ ( 𝐺 ∈ ( ℝ ↑m 𝐼 ) → 𝐺 : 𝐼 ⟶ ℝ ) |
17 |
15 16
|
syl |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝐺 : 𝐼 ⟶ ℝ ) |
18 |
17
|
ffvelrnda |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
19 |
14 18
|
resubcld |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
20 |
19
|
resqcld |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ) |
21 |
|
simprl |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝑅 ∈ ℝ+ ) |
22 |
21
|
rpred |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝑅 ∈ ℝ ) |
23 |
22
|
resqcld |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( 𝑅 ↑ 2 ) ∈ ℝ ) |
24 |
23
|
adantr |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑅 ↑ 2 ) ∈ ℝ ) |
25 |
|
absresq |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
26 |
19 25
|
syl |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
27 |
2
|
remetdval |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑘 ) 𝑀 ( 𝐺 ‘ 𝑘 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) ) |
28 |
14 18 27
|
syl2anc |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) 𝑀 ( 𝐺 ‘ 𝑘 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) ) |
29 |
|
simprr |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) |
30 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) |
31 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) |
32 |
30 31
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝑀 ( 𝐺 ‘ 𝑘 ) ) ) |
33 |
32
|
breq1d |
⊢ ( 𝑛 = 𝑘 → ( ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝑀 ( 𝐺 ‘ 𝑘 ) ) < 𝑅 ) ) |
34 |
33
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) 𝑀 ( 𝐺 ‘ 𝑘 ) ) < 𝑅 ) |
35 |
29 34
|
sylan |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) 𝑀 ( 𝐺 ‘ 𝑘 ) ) < 𝑅 ) |
36 |
28 35
|
eqbrtrrd |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < 𝑅 ) |
37 |
19
|
recnd |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
38 |
37
|
abscld |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℝ ) |
39 |
22
|
adantr |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → 𝑅 ∈ ℝ ) |
40 |
37
|
absge0d |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) ) |
41 |
21
|
rpge0d |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 0 ≤ 𝑅 ) |
42 |
41
|
adantr |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → 0 ≤ 𝑅 ) |
43 |
38 39 40 42
|
lt2sqd |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) < 𝑅 ↔ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) ↑ 2 ) < ( 𝑅 ↑ 2 ) ) ) |
44 |
36 43
|
mpbid |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) ↑ 2 ) < ( 𝑅 ↑ 2 ) ) |
45 |
26 44
|
eqbrtrrd |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) < ( 𝑅 ↑ 2 ) ) |
46 |
4 10 20 24 45
|
fsumlt |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) < Σ 𝑘 ∈ 𝐼 ( 𝑅 ↑ 2 ) ) |
47 |
4 20
|
fsumrecl |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ) |
48 |
19
|
sqge0d |
⊢ ( ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → 0 ≤ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
49 |
4 20 48
|
fsumge0 |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 0 ≤ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
50 |
|
resqrtth |
⊢ ( ( Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ∧ 0 ≤ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) → ( ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
51 |
47 49 50
|
syl2anc |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
52 |
|
hashnncl |
⊢ ( 𝐼 ∈ Fin → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
53 |
4 52
|
syl |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
54 |
10 53
|
mpbird |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ♯ ‘ 𝐼 ) ∈ ℕ ) |
55 |
54
|
nnrpd |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ♯ ‘ 𝐼 ) ∈ ℝ+ ) |
56 |
55
|
rpred |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ♯ ‘ 𝐼 ) ∈ ℝ ) |
57 |
55
|
rpge0d |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 0 ≤ ( ♯ ‘ 𝐼 ) ) |
58 |
|
resqrtth |
⊢ ( ( ( ♯ ‘ 𝐼 ) ∈ ℝ ∧ 0 ≤ ( ♯ ‘ 𝐼 ) ) → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) ↑ 2 ) = ( ♯ ‘ 𝐼 ) ) |
59 |
56 57 58
|
syl2anc |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) ↑ 2 ) = ( ♯ ‘ 𝐼 ) ) |
60 |
59
|
oveq2d |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( 𝑅 ↑ 2 ) · ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) ↑ 2 ) ) = ( ( 𝑅 ↑ 2 ) · ( ♯ ‘ 𝐼 ) ) ) |
61 |
23
|
recnd |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( 𝑅 ↑ 2 ) ∈ ℂ ) |
62 |
55
|
rpcnd |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ♯ ‘ 𝐼 ) ∈ ℂ ) |
63 |
61 62
|
mulcomd |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( 𝑅 ↑ 2 ) · ( ♯ ‘ 𝐼 ) ) = ( ( ♯ ‘ 𝐼 ) · ( 𝑅 ↑ 2 ) ) ) |
64 |
60 63
|
eqtrd |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( 𝑅 ↑ 2 ) · ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) ↑ 2 ) ) = ( ( ♯ ‘ 𝐼 ) · ( 𝑅 ↑ 2 ) ) ) |
65 |
21
|
rpcnd |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 𝑅 ∈ ℂ ) |
66 |
55
|
rpsqrtcld |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ+ ) |
67 |
66
|
rpcnd |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℂ ) |
68 |
65 67
|
sqmuld |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↑ 2 ) = ( ( 𝑅 ↑ 2 ) · ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) ↑ 2 ) ) ) |
69 |
|
fsumconst |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑅 ↑ 2 ) ∈ ℂ ) → Σ 𝑘 ∈ 𝐼 ( 𝑅 ↑ 2 ) = ( ( ♯ ‘ 𝐼 ) · ( 𝑅 ↑ 2 ) ) ) |
70 |
4 61 69
|
syl2anc |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → Σ 𝑘 ∈ 𝐼 ( 𝑅 ↑ 2 ) = ( ( ♯ ‘ 𝐼 ) · ( 𝑅 ↑ 2 ) ) ) |
71 |
64 68 70
|
3eqtr4d |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝐼 ( 𝑅 ↑ 2 ) ) |
72 |
46 51 71
|
3brtr4d |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) < ( ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↑ 2 ) ) |
73 |
47 49
|
resqrtcld |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ∈ ℝ ) |
74 |
21 66
|
rpmulcld |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
75 |
74
|
rpred |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ ) |
76 |
47 49
|
sqrtge0d |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 0 ≤ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
77 |
74
|
rpge0d |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → 0 ≤ ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
78 |
73 75 76 77
|
lt2sqd |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) < ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ( ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) < ( ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↑ 2 ) ) ) |
79 |
72 78
|
mpbird |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) < ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
80 |
8 79
|
eqbrtrd |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( 𝐹 ‘ 𝑛 ) 𝑀 ( 𝐺 ‘ 𝑛 ) ) < 𝑅 ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) < ( 𝑅 · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |