Step |
Hyp |
Ref |
Expression |
1 |
|
rrnequiv.y |
⊢ 𝑌 = ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) |
2 |
|
rrnequiv.d |
⊢ 𝐷 = ( dist ‘ 𝑌 ) |
3 |
|
rrnequiv.1 |
⊢ 𝑋 = ( ℝ ↑m 𝐼 ) |
4 |
|
rrnequiv.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
5 |
|
ovex |
⊢ ( ℂfld ↾s ℝ ) ∈ V |
6 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐼 ∈ Fin ) |
7 |
|
reex |
⊢ ℝ ∈ V |
8 |
|
eqid |
⊢ ( ℂfld ↾s ℝ ) = ( ℂfld ↾s ℝ ) |
9 |
|
eqid |
⊢ ( Scalar ‘ ℂfld ) = ( Scalar ‘ ℂfld ) |
10 |
8 9
|
resssca |
⊢ ( ℝ ∈ V → ( Scalar ‘ ℂfld ) = ( Scalar ‘ ( ℂfld ↾s ℝ ) ) ) |
11 |
7 10
|
ax-mp |
⊢ ( Scalar ‘ ℂfld ) = ( Scalar ‘ ( ℂfld ↾s ℝ ) ) |
12 |
1 11
|
pwsval |
⊢ ( ( ( ℂfld ↾s ℝ ) ∈ V ∧ 𝐼 ∈ Fin ) → 𝑌 = ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) |
13 |
5 6 12
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝑌 = ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) |
14 |
13
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( dist ‘ 𝑌 ) = ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
15 |
2 14
|
syl5eq |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐷 = ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
16 |
15
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 𝐷 𝐺 ) = ( 𝐹 ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) 𝐺 ) ) |
17 |
|
fconstmpt |
⊢ ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) = ( 𝑘 ∈ 𝐼 ↦ ( ℂfld ↾s ℝ ) ) |
18 |
17
|
oveq2i |
⊢ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) = ( ( Scalar ‘ ℂfld ) Xs ( 𝑘 ∈ 𝐼 ↦ ( ℂfld ↾s ℝ ) ) ) |
19 |
|
eqid |
⊢ ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) = ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) |
20 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( Scalar ‘ ℂfld ) ∈ V ) |
21 |
5
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ℂfld ↾s ℝ ) ∈ V ) |
22 |
21
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑘 ∈ 𝐼 ( ℂfld ↾s ℝ ) ∈ V ) |
23 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 ∈ 𝑋 ) |
24 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
25 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
26 |
8 25
|
ressbas2 |
⊢ ( ℝ ⊆ ℂ → ℝ = ( Base ‘ ( ℂfld ↾s ℝ ) ) ) |
27 |
24 26
|
ax-mp |
⊢ ℝ = ( Base ‘ ( ℂfld ↾s ℝ ) ) |
28 |
1 27
|
pwsbas |
⊢ ( ( ( ℂfld ↾s ℝ ) ∈ V ∧ 𝐼 ∈ Fin ) → ( ℝ ↑m 𝐼 ) = ( Base ‘ 𝑌 ) ) |
29 |
5 6 28
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ℝ ↑m 𝐼 ) = ( Base ‘ 𝑌 ) ) |
30 |
13
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
31 |
29 30
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ℝ ↑m 𝐼 ) = ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
32 |
3 31
|
syl5eq |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝑋 = ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
33 |
23 32
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 ∈ ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
34 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 ∈ 𝑋 ) |
35 |
34 32
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 ∈ ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
36 |
|
cnfldds |
⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) |
37 |
8 36
|
ressds |
⊢ ( ℝ ∈ V → ( abs ∘ − ) = ( dist ‘ ( ℂfld ↾s ℝ ) ) ) |
38 |
7 37
|
ax-mp |
⊢ ( abs ∘ − ) = ( dist ‘ ( ℂfld ↾s ℝ ) ) |
39 |
38
|
reseq1i |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( dist ‘ ( ℂfld ↾s ℝ ) ) ↾ ( ℝ × ℝ ) ) |
40 |
|
eqid |
⊢ ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) = ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) |
41 |
18 19 20 6 22 33 35 27 39 40
|
prdsdsval3 |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) 𝐺 ) = sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
42 |
16 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 𝐷 𝐺 ) = sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
43 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
44 |
3 43
|
rrndstprj1 |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
45 |
44
|
an32s |
⊢ ( ( ( 𝐼 ∈ Fin ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
46 |
4 45
|
sylanl1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
47 |
46
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
48 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ V |
49 |
48
|
rgenw |
⊢ ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ V |
50 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
51 |
|
breq1 |
⊢ ( 𝑧 = ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) → ( 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
52 |
50 51
|
ralrnmptw |
⊢ ( ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
53 |
49 52
|
ax-mp |
⊢ ( ∀ 𝑧 ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
54 |
47 53
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑧 ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
55 |
3
|
rrnmet |
⊢ ( 𝐼 ∈ Fin → ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ) |
56 |
6 55
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ) |
57 |
|
metge0 |
⊢ ( ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 0 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
58 |
56 23 34 57
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
59 |
|
elsni |
⊢ ( 𝑧 ∈ { 0 } → 𝑧 = 0 ) |
60 |
59
|
breq1d |
⊢ ( 𝑧 ∈ { 0 } → ( 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ 0 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
61 |
58 60
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝑧 ∈ { 0 } → 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
62 |
61
|
ralrimiv |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑧 ∈ { 0 } 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
63 |
|
ralunb |
⊢ ( ∀ 𝑧 ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ( ∀ 𝑧 ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∧ ∀ 𝑧 ∈ { 0 } 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
64 |
54 62 63
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑧 ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
65 |
18 19 20 6 22 27 33
|
prdsbascl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑘 ∈ 𝐼 ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
66 |
65
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
67 |
18 19 20 6 22 27 35
|
prdsbascl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
68 |
67
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
69 |
43
|
remet |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( Met ‘ ℝ ) |
70 |
|
metcl |
⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( Met ‘ ℝ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
71 |
69 70
|
mp3an1 |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
72 |
66 68 71
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
73 |
72
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) : 𝐼 ⟶ ℝ ) |
74 |
73
|
frnd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ⊆ ℝ ) |
75 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
76 |
74 75
|
sstrdi |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ⊆ ℝ* ) |
77 |
|
0xr |
⊢ 0 ∈ ℝ* |
78 |
77
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ∈ ℝ* ) |
79 |
78
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → { 0 } ⊆ ℝ* ) |
80 |
76 79
|
unssd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
81 |
|
metcl |
⊢ ( ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ ) |
82 |
56 23 34 81
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ ) |
83 |
75 82
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ* ) |
84 |
|
supxrleub |
⊢ ( ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ* ) → ( sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ∀ 𝑧 ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
85 |
80 83 84
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ∀ 𝑧 ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
86 |
64 85
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
87 |
42 86
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 𝐷 𝐺 ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
88 |
|
rzal |
⊢ ( 𝐼 = ∅ → ∀ 𝑘 ∈ 𝐼 ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
89 |
23 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) |
90 |
|
elmapi |
⊢ ( 𝐹 ∈ ( ℝ ↑m 𝐼 ) → 𝐹 : 𝐼 ⟶ ℝ ) |
91 |
|
ffn |
⊢ ( 𝐹 : 𝐼 ⟶ ℝ → 𝐹 Fn 𝐼 ) |
92 |
89 90 91
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 Fn 𝐼 ) |
93 |
34 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) |
94 |
|
elmapi |
⊢ ( 𝐺 ∈ ( ℝ ↑m 𝐼 ) → 𝐺 : 𝐼 ⟶ ℝ ) |
95 |
|
ffn |
⊢ ( 𝐺 : 𝐼 ⟶ ℝ → 𝐺 Fn 𝐼 ) |
96 |
93 94 95
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 Fn 𝐼 ) |
97 |
|
eqfnfv |
⊢ ( ( 𝐹 Fn 𝐼 ∧ 𝐺 Fn 𝐼 ) → ( 𝐹 = 𝐺 ↔ ∀ 𝑘 ∈ 𝐼 ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
98 |
92 96 97
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 = 𝐺 ↔ ∀ 𝑘 ∈ 𝐼 ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
99 |
88 98
|
syl5ibr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐼 = ∅ → 𝐹 = 𝐺 ) ) |
100 |
99
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 = ∅ ) → 𝐹 = 𝐺 ) |
101 |
100
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 = ∅ ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) = ( 𝐺 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
102 |
|
met0 |
⊢ ( ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ∧ 𝐺 ∈ 𝑋 ) → ( 𝐺 ( ℝn ‘ 𝐼 ) 𝐺 ) = 0 ) |
103 |
56 34 102
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐺 ( ℝn ‘ 𝐼 ) 𝐺 ) = 0 ) |
104 |
|
hashcl |
⊢ ( 𝐼 ∈ Fin → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
105 |
6 104
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
106 |
105
|
nn0red |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ♯ ‘ 𝐼 ) ∈ ℝ ) |
107 |
105
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( ♯ ‘ 𝐼 ) ) |
108 |
106 107
|
resqrtcld |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ ) |
109 |
1 2 3
|
repwsmet |
⊢ ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
110 |
6 109
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
111 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 𝐷 𝐺 ) ∈ ℝ ) |
112 |
110 23 34 111
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 𝐷 𝐺 ) ∈ ℝ ) |
113 |
106 107
|
sqrtge0d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) |
114 |
|
metge0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 0 ≤ ( 𝐹 𝐷 𝐺 ) ) |
115 |
110 23 34 114
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( 𝐹 𝐷 𝐺 ) ) |
116 |
108 112 113 115
|
mulge0d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
117 |
103 116
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐺 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
118 |
117
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 = ∅ ) → ( 𝐺 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
119 |
101 118
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 = ∅ ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
120 |
82
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ ) |
121 |
108 112
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ∈ ℝ ) |
122 |
121
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ∈ ℝ ) |
123 |
|
rpre |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) |
124 |
123
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝑟 ∈ ℝ ) |
125 |
122 124
|
readdcld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ∈ ℝ ) |
126 |
6
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝐼 ∈ Fin ) |
127 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝐼 ≠ ∅ ) |
128 |
|
eldifsn |
⊢ ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ↔ ( 𝐼 ∈ Fin ∧ 𝐼 ≠ ∅ ) ) |
129 |
126 127 128
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝐼 ∈ ( Fin ∖ { ∅ } ) ) |
130 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝐹 ∈ 𝑋 ) |
131 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝐺 ∈ 𝑋 ) |
132 |
112
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 𝐷 𝐺 ) ∈ ℝ ) |
133 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝑟 ∈ ℝ+ ) |
134 |
|
hashnncl |
⊢ ( 𝐼 ∈ Fin → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
135 |
126 134
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
136 |
127 135
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ♯ ‘ 𝐼 ) ∈ ℕ ) |
137 |
136
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ♯ ‘ 𝐼 ) ∈ ℝ+ ) |
138 |
137
|
rpsqrtcld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ+ ) |
139 |
133 138
|
rpdivcld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
140 |
139
|
rpred |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ ) |
141 |
132 140
|
readdcld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ ) |
142 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 0 ∈ ℝ ) |
143 |
115
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 0 ≤ ( 𝐹 𝐷 𝐺 ) ) |
144 |
132 139
|
ltaddrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 𝐷 𝐺 ) < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
145 |
142 132 141 143 144
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 0 < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
146 |
141 145
|
elrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ+ ) |
147 |
72
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
148 |
132
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 𝐷 𝐺 ) ∈ ℝ ) |
149 |
141
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ ) |
150 |
80
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
151 |
|
ssun1 |
⊢ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ⊆ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) |
152 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → 𝑘 ∈ 𝐼 ) |
153 |
50
|
elrnmpt1 |
⊢ ( ( 𝑘 ∈ 𝐼 ∧ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ V ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
154 |
152 48 153
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
155 |
151 154
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ) |
156 |
|
supxrub |
⊢ ( ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
157 |
150 155 156
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
158 |
42
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 𝐷 𝐺 ) = sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
159 |
157 158
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 𝐷 𝐺 ) ) |
160 |
144
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 𝐷 𝐺 ) < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
161 |
147 148 149 159 160
|
lelttrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
162 |
161
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
163 |
3 43
|
rrndstprj2 |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ+ ∧ ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) < ( ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
164 |
129 130 131 146 162 163
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) < ( ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
165 |
132
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 𝐷 𝐺 ) ∈ ℂ ) |
166 |
140
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℂ ) |
167 |
108
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ ) |
168 |
167
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℂ ) |
169 |
165 166 168
|
adddird |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) = ( ( ( 𝐹 𝐷 𝐺 ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) + ( ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
170 |
165 168
|
mulcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( 𝐹 𝐷 𝐺 ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) = ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
171 |
124
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝑟 ∈ ℂ ) |
172 |
138
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ≠ 0 ) |
173 |
171 168 172
|
divcan1d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) = 𝑟 ) |
174 |
170 173
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( ( 𝐹 𝐷 𝐺 ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) + ( ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) = ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
175 |
169 174
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) = ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
176 |
164 175
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) < ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
177 |
120 125 176
|
ltled |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
178 |
177
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
179 |
178
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 ≠ ∅ ) → ∀ 𝑟 ∈ ℝ+ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
180 |
|
alrple |
⊢ ( ( ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ ∧ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ∈ ℝ ) → ( ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ↔ ∀ 𝑟 ∈ ℝ+ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) ) |
181 |
82 121 180
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ↔ ∀ 𝑟 ∈ ℝ+ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) ) |
182 |
181
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 ≠ ∅ ) → ( ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ↔ ∀ 𝑟 ∈ ℝ+ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) ) |
183 |
179 182
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 ≠ ∅ ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
184 |
119 183
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
185 |
87 184
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 𝐷 𝐺 ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∧ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) ) |