| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrnequiv.y |
⊢ 𝑌 = ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) |
| 2 |
|
rrnequiv.d |
⊢ 𝐷 = ( dist ‘ 𝑌 ) |
| 3 |
|
rrnequiv.1 |
⊢ 𝑋 = ( ℝ ↑m 𝐼 ) |
| 4 |
|
rrnequiv.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 5 |
|
ovex |
⊢ ( ℂfld ↾s ℝ ) ∈ V |
| 6 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐼 ∈ Fin ) |
| 7 |
|
reex |
⊢ ℝ ∈ V |
| 8 |
|
eqid |
⊢ ( ℂfld ↾s ℝ ) = ( ℂfld ↾s ℝ ) |
| 9 |
|
eqid |
⊢ ( Scalar ‘ ℂfld ) = ( Scalar ‘ ℂfld ) |
| 10 |
8 9
|
resssca |
⊢ ( ℝ ∈ V → ( Scalar ‘ ℂfld ) = ( Scalar ‘ ( ℂfld ↾s ℝ ) ) ) |
| 11 |
7 10
|
ax-mp |
⊢ ( Scalar ‘ ℂfld ) = ( Scalar ‘ ( ℂfld ↾s ℝ ) ) |
| 12 |
1 11
|
pwsval |
⊢ ( ( ( ℂfld ↾s ℝ ) ∈ V ∧ 𝐼 ∈ Fin ) → 𝑌 = ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) |
| 13 |
5 6 12
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝑌 = ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) |
| 14 |
13
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( dist ‘ 𝑌 ) = ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
| 15 |
2 14
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐷 = ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
| 16 |
15
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 𝐷 𝐺 ) = ( 𝐹 ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) 𝐺 ) ) |
| 17 |
|
fconstmpt |
⊢ ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) = ( 𝑘 ∈ 𝐼 ↦ ( ℂfld ↾s ℝ ) ) |
| 18 |
17
|
oveq2i |
⊢ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) = ( ( Scalar ‘ ℂfld ) Xs ( 𝑘 ∈ 𝐼 ↦ ( ℂfld ↾s ℝ ) ) ) |
| 19 |
|
eqid |
⊢ ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) = ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) |
| 20 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( Scalar ‘ ℂfld ) ∈ V ) |
| 21 |
5
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ℂfld ↾s ℝ ) ∈ V ) |
| 22 |
21
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑘 ∈ 𝐼 ( ℂfld ↾s ℝ ) ∈ V ) |
| 23 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 ∈ 𝑋 ) |
| 24 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 25 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 26 |
8 25
|
ressbas2 |
⊢ ( ℝ ⊆ ℂ → ℝ = ( Base ‘ ( ℂfld ↾s ℝ ) ) ) |
| 27 |
24 26
|
ax-mp |
⊢ ℝ = ( Base ‘ ( ℂfld ↾s ℝ ) ) |
| 28 |
1 27
|
pwsbas |
⊢ ( ( ( ℂfld ↾s ℝ ) ∈ V ∧ 𝐼 ∈ Fin ) → ( ℝ ↑m 𝐼 ) = ( Base ‘ 𝑌 ) ) |
| 29 |
5 6 28
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ℝ ↑m 𝐼 ) = ( Base ‘ 𝑌 ) ) |
| 30 |
13
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
| 31 |
29 30
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ℝ ↑m 𝐼 ) = ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
| 32 |
3 31
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝑋 = ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
| 33 |
23 32
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 ∈ ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
| 34 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 ∈ 𝑋 ) |
| 35 |
34 32
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 ∈ ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
| 36 |
|
cnfldds |
⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) |
| 37 |
8 36
|
ressds |
⊢ ( ℝ ∈ V → ( abs ∘ − ) = ( dist ‘ ( ℂfld ↾s ℝ ) ) ) |
| 38 |
7 37
|
ax-mp |
⊢ ( abs ∘ − ) = ( dist ‘ ( ℂfld ↾s ℝ ) ) |
| 39 |
38
|
reseq1i |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( dist ‘ ( ℂfld ↾s ℝ ) ) ↾ ( ℝ × ℝ ) ) |
| 40 |
|
eqid |
⊢ ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) = ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) |
| 41 |
18 19 20 6 22 33 35 27 39 40
|
prdsdsval3 |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) 𝐺 ) = sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 42 |
16 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 𝐷 𝐺 ) = sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 43 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
| 44 |
3 43
|
rrndstprj1 |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 45 |
44
|
an32s |
⊢ ( ( ( 𝐼 ∈ Fin ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 46 |
4 45
|
sylanl1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 47 |
46
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 48 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ V |
| 49 |
48
|
rgenw |
⊢ ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ V |
| 50 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 51 |
|
breq1 |
⊢ ( 𝑧 = ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) → ( 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
| 52 |
50 51
|
ralrnmptw |
⊢ ( ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
| 53 |
49 52
|
ax-mp |
⊢ ( ∀ 𝑧 ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 54 |
47 53
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑧 ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 55 |
3
|
rrnmet |
⊢ ( 𝐼 ∈ Fin → ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ) |
| 56 |
6 55
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ) |
| 57 |
|
metge0 |
⊢ ( ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 0 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 58 |
56 23 34 57
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 59 |
|
elsni |
⊢ ( 𝑧 ∈ { 0 } → 𝑧 = 0 ) |
| 60 |
59
|
breq1d |
⊢ ( 𝑧 ∈ { 0 } → ( 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ 0 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
| 61 |
58 60
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝑧 ∈ { 0 } → 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
| 62 |
61
|
ralrimiv |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑧 ∈ { 0 } 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 63 |
|
ralunb |
⊢ ( ∀ 𝑧 ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ( ∀ 𝑧 ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∧ ∀ 𝑧 ∈ { 0 } 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
| 64 |
54 62 63
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑧 ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 65 |
18 19 20 6 22 27 33
|
prdsbascl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑘 ∈ 𝐼 ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 66 |
65
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 67 |
18 19 20 6 22 27 35
|
prdsbascl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 68 |
67
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 69 |
43
|
remet |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( Met ‘ ℝ ) |
| 70 |
|
metcl |
⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( Met ‘ ℝ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 71 |
69 70
|
mp3an1 |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 72 |
66 68 71
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 73 |
72
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) : 𝐼 ⟶ ℝ ) |
| 74 |
73
|
frnd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ⊆ ℝ ) |
| 75 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 76 |
74 75
|
sstrdi |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ⊆ ℝ* ) |
| 77 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 78 |
77
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ∈ ℝ* ) |
| 79 |
78
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → { 0 } ⊆ ℝ* ) |
| 80 |
76 79
|
unssd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
| 81 |
|
metcl |
⊢ ( ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ ) |
| 82 |
56 23 34 81
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ ) |
| 83 |
75 82
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ* ) |
| 84 |
|
supxrleub |
⊢ ( ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ* ) → ( sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ∀ 𝑧 ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
| 85 |
80 83 84
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ∀ 𝑧 ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
| 86 |
64 85
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 87 |
42 86
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 𝐷 𝐺 ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 88 |
|
rzal |
⊢ ( 𝐼 = ∅ → ∀ 𝑘 ∈ 𝐼 ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 89 |
23 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) |
| 90 |
|
elmapi |
⊢ ( 𝐹 ∈ ( ℝ ↑m 𝐼 ) → 𝐹 : 𝐼 ⟶ ℝ ) |
| 91 |
|
ffn |
⊢ ( 𝐹 : 𝐼 ⟶ ℝ → 𝐹 Fn 𝐼 ) |
| 92 |
89 90 91
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 Fn 𝐼 ) |
| 93 |
34 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) |
| 94 |
|
elmapi |
⊢ ( 𝐺 ∈ ( ℝ ↑m 𝐼 ) → 𝐺 : 𝐼 ⟶ ℝ ) |
| 95 |
|
ffn |
⊢ ( 𝐺 : 𝐼 ⟶ ℝ → 𝐺 Fn 𝐼 ) |
| 96 |
93 94 95
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 Fn 𝐼 ) |
| 97 |
|
eqfnfv |
⊢ ( ( 𝐹 Fn 𝐼 ∧ 𝐺 Fn 𝐼 ) → ( 𝐹 = 𝐺 ↔ ∀ 𝑘 ∈ 𝐼 ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 98 |
92 96 97
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 = 𝐺 ↔ ∀ 𝑘 ∈ 𝐼 ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 99 |
88 98
|
imbitrrid |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐼 = ∅ → 𝐹 = 𝐺 ) ) |
| 100 |
99
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 = ∅ ) → 𝐹 = 𝐺 ) |
| 101 |
100
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 = ∅ ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) = ( 𝐺 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 102 |
|
met0 |
⊢ ( ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ∧ 𝐺 ∈ 𝑋 ) → ( 𝐺 ( ℝn ‘ 𝐼 ) 𝐺 ) = 0 ) |
| 103 |
56 34 102
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐺 ( ℝn ‘ 𝐼 ) 𝐺 ) = 0 ) |
| 104 |
|
hashcl |
⊢ ( 𝐼 ∈ Fin → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 105 |
6 104
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 106 |
105
|
nn0red |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ♯ ‘ 𝐼 ) ∈ ℝ ) |
| 107 |
105
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( ♯ ‘ 𝐼 ) ) |
| 108 |
106 107
|
resqrtcld |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ ) |
| 109 |
1 2 3
|
repwsmet |
⊢ ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 110 |
6 109
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 111 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 𝐷 𝐺 ) ∈ ℝ ) |
| 112 |
110 23 34 111
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 𝐷 𝐺 ) ∈ ℝ ) |
| 113 |
106 107
|
sqrtge0d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) |
| 114 |
|
metge0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 0 ≤ ( 𝐹 𝐷 𝐺 ) ) |
| 115 |
110 23 34 114
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( 𝐹 𝐷 𝐺 ) ) |
| 116 |
108 112 113 115
|
mulge0d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
| 117 |
103 116
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐺 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
| 118 |
117
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 = ∅ ) → ( 𝐺 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
| 119 |
101 118
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 = ∅ ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
| 120 |
82
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ ) |
| 121 |
108 112
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ∈ ℝ ) |
| 122 |
121
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ∈ ℝ ) |
| 123 |
|
rpre |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) |
| 124 |
123
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝑟 ∈ ℝ ) |
| 125 |
122 124
|
readdcld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ∈ ℝ ) |
| 126 |
6
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝐼 ∈ Fin ) |
| 127 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝐼 ≠ ∅ ) |
| 128 |
|
eldifsn |
⊢ ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ↔ ( 𝐼 ∈ Fin ∧ 𝐼 ≠ ∅ ) ) |
| 129 |
126 127 128
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝐼 ∈ ( Fin ∖ { ∅ } ) ) |
| 130 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝐹 ∈ 𝑋 ) |
| 131 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝐺 ∈ 𝑋 ) |
| 132 |
112
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 𝐷 𝐺 ) ∈ ℝ ) |
| 133 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝑟 ∈ ℝ+ ) |
| 134 |
|
hashnncl |
⊢ ( 𝐼 ∈ Fin → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
| 135 |
126 134
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
| 136 |
127 135
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ♯ ‘ 𝐼 ) ∈ ℕ ) |
| 137 |
136
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ♯ ‘ 𝐼 ) ∈ ℝ+ ) |
| 138 |
137
|
rpsqrtcld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ+ ) |
| 139 |
133 138
|
rpdivcld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
| 140 |
139
|
rpred |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ ) |
| 141 |
132 140
|
readdcld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ ) |
| 142 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 0 ∈ ℝ ) |
| 143 |
115
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 0 ≤ ( 𝐹 𝐷 𝐺 ) ) |
| 144 |
132 139
|
ltaddrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 𝐷 𝐺 ) < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 145 |
142 132 141 143 144
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 0 < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 146 |
141 145
|
elrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ+ ) |
| 147 |
72
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 148 |
132
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 𝐷 𝐺 ) ∈ ℝ ) |
| 149 |
141
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ ) |
| 150 |
80
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
| 151 |
|
ssun1 |
⊢ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ⊆ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) |
| 152 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → 𝑘 ∈ 𝐼 ) |
| 153 |
50
|
elrnmpt1 |
⊢ ( ( 𝑘 ∈ 𝐼 ∧ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ V ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 154 |
152 48 153
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 155 |
151 154
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ) |
| 156 |
|
supxrub |
⊢ ( ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 157 |
150 155 156
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 158 |
42
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 𝐷 𝐺 ) = sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 159 |
157 158
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 𝐷 𝐺 ) ) |
| 160 |
144
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 𝐷 𝐺 ) < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 161 |
147 148 149 159 160
|
lelttrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 162 |
161
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 163 |
3 43
|
rrndstprj2 |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ+ ∧ ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) < ( ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 164 |
129 130 131 146 162 163
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) < ( ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 165 |
132
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 𝐷 𝐺 ) ∈ ℂ ) |
| 166 |
140
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℂ ) |
| 167 |
108
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ ) |
| 168 |
167
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℂ ) |
| 169 |
165 166 168
|
adddird |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) = ( ( ( 𝐹 𝐷 𝐺 ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) + ( ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 170 |
165 168
|
mulcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( 𝐹 𝐷 𝐺 ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) = ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
| 171 |
124
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝑟 ∈ ℂ ) |
| 172 |
138
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ≠ 0 ) |
| 173 |
171 168 172
|
divcan1d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) = 𝑟 ) |
| 174 |
170 173
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( ( 𝐹 𝐷 𝐺 ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) + ( ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) = ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
| 175 |
169 174
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) = ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
| 176 |
164 175
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) < ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
| 177 |
120 125 176
|
ltled |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
| 178 |
177
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
| 179 |
178
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 ≠ ∅ ) → ∀ 𝑟 ∈ ℝ+ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
| 180 |
|
alrple |
⊢ ( ( ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ ∧ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ∈ ℝ ) → ( ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ↔ ∀ 𝑟 ∈ ℝ+ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) ) |
| 181 |
82 121 180
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ↔ ∀ 𝑟 ∈ ℝ+ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) ) |
| 182 |
181
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 ≠ ∅ ) → ( ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ↔ ∀ 𝑟 ∈ ℝ+ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) ) |
| 183 |
179 182
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 ≠ ∅ ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
| 184 |
119 183
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
| 185 |
87 184
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 𝐷 𝐺 ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∧ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) ) |