Step |
Hyp |
Ref |
Expression |
1 |
|
rrnval.1 |
⊢ 𝑋 = ( ℝ ↑m 𝐼 ) |
2 |
1
|
rrnval |
⊢ ( 𝐼 ∈ Fin → ( ℝn ‘ 𝐼 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( ℝn ‘ 𝐼 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
4 |
|
fveq1 |
⊢ ( 𝑥 = 𝐹 → ( 𝑥 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
5 |
|
fveq1 |
⊢ ( 𝑦 = 𝐺 → ( 𝑦 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
6 |
4 5
|
oveqan12d |
⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) |
7 |
6
|
oveq1d |
⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
8 |
7
|
sumeq2sdv |
⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) ) → ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
11 |
|
simp2 |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐹 ∈ 𝑋 ) |
12 |
|
simp3 |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐺 ∈ 𝑋 ) |
13 |
|
fvexd |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ∈ V ) |
14 |
3 10 11 12 13
|
ovmpod |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |