Step |
Hyp |
Ref |
Expression |
1 |
|
rrntotbnd.1 |
⊢ 𝑋 = ( ℝ ↑m 𝐼 ) |
2 |
|
rrntotbnd.2 |
⊢ 𝑀 = ( ( ℝn ‘ 𝐼 ) ↾ ( 𝑌 × 𝑌 ) ) |
3 |
|
eqid |
⊢ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) = ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) |
4 |
|
eqid |
⊢ ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) = ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) |
5 |
3 4 1
|
repwsmet |
⊢ ( 𝐼 ∈ Fin → ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) ∈ ( Met ‘ 𝑋 ) ) |
6 |
1
|
rrnmet |
⊢ ( 𝐼 ∈ Fin → ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ) |
7 |
|
hashcl |
⊢ ( 𝐼 ∈ Fin → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
8 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝐼 ) ∈ ℕ0 → ( ♯ ‘ 𝐼 ) ∈ ℝ ) |
9 |
|
nn0ge0 |
⊢ ( ( ♯ ‘ 𝐼 ) ∈ ℕ0 → 0 ≤ ( ♯ ‘ 𝐼 ) ) |
10 |
8 9
|
resqrtcld |
⊢ ( ( ♯ ‘ 𝐼 ) ∈ ℕ0 → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ ) |
11 |
7 10
|
syl |
⊢ ( 𝐼 ∈ Fin → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ ) |
12 |
8 9
|
sqrtge0d |
⊢ ( ( ♯ ‘ 𝐼 ) ∈ ℕ0 → 0 ≤ ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) |
13 |
7 12
|
syl |
⊢ ( 𝐼 ∈ Fin → 0 ≤ ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) |
14 |
11 13
|
ge0p1rpd |
⊢ ( 𝐼 ∈ Fin → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) + 1 ) ∈ ℝ+ ) |
15 |
|
1rp |
⊢ 1 ∈ ℝ+ |
16 |
15
|
a1i |
⊢ ( 𝐼 ∈ Fin → 1 ∈ ℝ+ ) |
17 |
|
metcl |
⊢ ( ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( ℝn ‘ 𝐼 ) 𝑦 ) ∈ ℝ ) |
18 |
17
|
3expb |
⊢ ( ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( ℝn ‘ 𝐼 ) 𝑦 ) ∈ ℝ ) |
19 |
6 18
|
sylan |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( ℝn ‘ 𝐼 ) 𝑦 ) ∈ ℝ ) |
20 |
11
|
adantr |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ ) |
21 |
5
|
adantr |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) ∈ ( Met ‘ 𝑋 ) ) |
22 |
|
simprl |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) |
23 |
|
simprr |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) |
24 |
|
metcl |
⊢ ( ( ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ∈ ℝ ) |
25 |
|
metge0 |
⊢ ( ( ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 0 ≤ ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ) |
26 |
24 25
|
jca |
⊢ ( ( ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ) ) |
27 |
21 22 23 26
|
syl3anc |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ) ) |
28 |
27
|
simpld |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ∈ ℝ ) |
29 |
20 28
|
remulcld |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ) ∈ ℝ ) |
30 |
|
peano2re |
⊢ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) + 1 ) ∈ ℝ ) |
31 |
11 30
|
syl |
⊢ ( 𝐼 ∈ Fin → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) + 1 ) ∈ ℝ ) |
32 |
31
|
adantr |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) + 1 ) ∈ ℝ ) |
33 |
32 28
|
remulcld |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) + 1 ) · ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ) ∈ ℝ ) |
34 |
|
id |
⊢ ( 𝐼 ∈ Fin → 𝐼 ∈ Fin ) |
35 |
3 4 1 34
|
rrnequiv |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ≤ ( 𝑥 ( ℝn ‘ 𝐼 ) 𝑦 ) ∧ ( 𝑥 ( ℝn ‘ 𝐼 ) 𝑦 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ) ) ) |
36 |
35
|
simprd |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( ℝn ‘ 𝐼 ) 𝑦 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ) ) |
37 |
20
|
lep1d |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) + 1 ) ) |
38 |
|
lemul1a |
⊢ ( ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ ∧ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) + 1 ) ∈ ℝ ∧ ( ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ) ) ∧ ( √ ‘ ( ♯ ‘ 𝐼 ) ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) + 1 ) ) → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) + 1 ) · ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ) ) |
39 |
20 32 27 37 38
|
syl31anc |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) + 1 ) · ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ) ) |
40 |
19 29 33 36 39
|
letrd |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( ℝn ‘ 𝐼 ) 𝑦 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) + 1 ) · ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ) ) |
41 |
35
|
simpld |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ≤ ( 𝑥 ( ℝn ‘ 𝐼 ) 𝑦 ) ) |
42 |
19
|
recnd |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( ℝn ‘ 𝐼 ) 𝑦 ) ∈ ℂ ) |
43 |
42
|
mulid2d |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 1 · ( 𝑥 ( ℝn ‘ 𝐼 ) 𝑦 ) ) = ( 𝑥 ( ℝn ‘ 𝐼 ) 𝑦 ) ) |
44 |
41 43
|
breqtrrd |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) 𝑦 ) ≤ ( 1 · ( 𝑥 ( ℝn ‘ 𝐼 ) 𝑦 ) ) ) |
45 |
|
eqid |
⊢ ( ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) ↾ ( 𝑌 × 𝑌 ) ) = ( ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) ↾ ( 𝑌 × 𝑌 ) ) |
46 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
47 |
3 45
|
cnpwstotbnd |
⊢ ( ( ℝ ⊆ ℂ ∧ 𝐼 ∈ Fin ) → ( ( ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) ↾ ( 𝑌 × 𝑌 ) ) ∈ ( TotBnd ‘ 𝑌 ) ↔ ( ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) ↾ ( 𝑌 × 𝑌 ) ) ∈ ( Bnd ‘ 𝑌 ) ) ) |
48 |
46 47
|
mpan |
⊢ ( 𝐼 ∈ Fin → ( ( ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) ↾ ( 𝑌 × 𝑌 ) ) ∈ ( TotBnd ‘ 𝑌 ) ↔ ( ( dist ‘ ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) ) ↾ ( 𝑌 × 𝑌 ) ) ∈ ( Bnd ‘ 𝑌 ) ) ) |
49 |
5 6 14 16 40 44 45 2 48
|
equivbnd2 |
⊢ ( 𝐼 ∈ Fin → ( 𝑀 ∈ ( TotBnd ‘ 𝑌 ) ↔ 𝑀 ∈ ( Bnd ‘ 𝑌 ) ) ) |