Metamath Proof Explorer


Theorem rrnval

Description: The n-dimensional Euclidean space. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypothesis rrnval.1 𝑋 = ( ℝ ↑m 𝐼 )
Assertion rrnval ( 𝐼 ∈ Fin → ( ℝn𝐼 ) = ( 𝑥𝑋 , 𝑦𝑋 ↦ ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) ) )

Proof

Step Hyp Ref Expression
1 rrnval.1 𝑋 = ( ℝ ↑m 𝐼 )
2 oveq2 ( 𝑖 = 𝐼 → ( ℝ ↑m 𝑖 ) = ( ℝ ↑m 𝐼 ) )
3 2 1 eqtr4di ( 𝑖 = 𝐼 → ( ℝ ↑m 𝑖 ) = 𝑋 )
4 sumeq1 ( 𝑖 = 𝐼 → Σ 𝑘𝑖 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) = Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) )
5 4 fveq2d ( 𝑖 = 𝐼 → ( √ ‘ Σ 𝑘𝑖 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) = ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) )
6 3 3 5 mpoeq123dv ( 𝑖 = 𝐼 → ( 𝑥 ∈ ( ℝ ↑m 𝑖 ) , 𝑦 ∈ ( ℝ ↑m 𝑖 ) ↦ ( √ ‘ Σ 𝑘𝑖 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) ) = ( 𝑥𝑋 , 𝑦𝑋 ↦ ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) ) )
7 df-rrn n = ( 𝑖 ∈ Fin ↦ ( 𝑥 ∈ ( ℝ ↑m 𝑖 ) , 𝑦 ∈ ( ℝ ↑m 𝑖 ) ↦ ( √ ‘ Σ 𝑘𝑖 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) ) )
8 fvrn0 ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) ∈ ( ran √ ∪ { ∅ } )
9 8 rgen2w 𝑥𝑋𝑦𝑋 ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) ∈ ( ran √ ∪ { ∅ } )
10 eqid ( 𝑥𝑋 , 𝑦𝑋 ↦ ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) ) = ( 𝑥𝑋 , 𝑦𝑋 ↦ ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) )
11 10 fmpo ( ∀ 𝑥𝑋𝑦𝑋 ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) ∈ ( ran √ ∪ { ∅ } ) ↔ ( 𝑥𝑋 , 𝑦𝑋 ↦ ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ ( ran √ ∪ { ∅ } ) )
12 9 11 mpbi ( 𝑥𝑋 , 𝑦𝑋 ↦ ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ ( ran √ ∪ { ∅ } )
13 ovex ( ℝ ↑m 𝐼 ) ∈ V
14 1 13 eqeltri 𝑋 ∈ V
15 14 14 xpex ( 𝑋 × 𝑋 ) ∈ V
16 cnex ℂ ∈ V
17 sqrtf √ : ℂ ⟶ ℂ
18 frn ( √ : ℂ ⟶ ℂ → ran √ ⊆ ℂ )
19 17 18 ax-mp ran √ ⊆ ℂ
20 16 19 ssexi ran √ ∈ V
21 p0ex { ∅ } ∈ V
22 20 21 unex ( ran √ ∪ { ∅ } ) ∈ V
23 fex2 ( ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ ( ran √ ∪ { ∅ } ) ∧ ( 𝑋 × 𝑋 ) ∈ V ∧ ( ran √ ∪ { ∅ } ) ∈ V ) → ( 𝑥𝑋 , 𝑦𝑋 ↦ ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) ) ∈ V )
24 12 15 22 23 mp3an ( 𝑥𝑋 , 𝑦𝑋 ↦ ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) ) ∈ V
25 6 7 24 fvmpt ( 𝐼 ∈ Fin → ( ℝn𝐼 ) = ( 𝑥𝑋 , 𝑦𝑋 ↦ ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) ) )