Step |
Hyp |
Ref |
Expression |
1 |
|
rrnval.1 |
⊢ 𝑋 = ( ℝ ↑m 𝐼 ) |
2 |
|
oveq2 |
⊢ ( 𝑖 = 𝐼 → ( ℝ ↑m 𝑖 ) = ( ℝ ↑m 𝐼 ) ) |
3 |
2 1
|
eqtr4di |
⊢ ( 𝑖 = 𝐼 → ( ℝ ↑m 𝑖 ) = 𝑋 ) |
4 |
|
sumeq1 |
⊢ ( 𝑖 = 𝐼 → Σ 𝑘 ∈ 𝑖 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝑖 = 𝐼 → ( √ ‘ Σ 𝑘 ∈ 𝑖 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
6 |
3 3 5
|
mpoeq123dv |
⊢ ( 𝑖 = 𝐼 → ( 𝑥 ∈ ( ℝ ↑m 𝑖 ) , 𝑦 ∈ ( ℝ ↑m 𝑖 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑖 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
7 |
|
df-rrn |
⊢ ℝn = ( 𝑖 ∈ Fin ↦ ( 𝑥 ∈ ( ℝ ↑m 𝑖 ) , 𝑦 ∈ ( ℝ ↑m 𝑖 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑖 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
8 |
|
fvrn0 |
⊢ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ∈ ( ran √ ∪ { ∅ } ) |
9 |
8
|
rgen2w |
⊢ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ∈ ( ran √ ∪ { ∅ } ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
11 |
10
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ∈ ( ran √ ∪ { ∅ } ) ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ ( ran √ ∪ { ∅ } ) ) |
12 |
9 11
|
mpbi |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ ( ran √ ∪ { ∅ } ) |
13 |
|
ovex |
⊢ ( ℝ ↑m 𝐼 ) ∈ V |
14 |
1 13
|
eqeltri |
⊢ 𝑋 ∈ V |
15 |
14 14
|
xpex |
⊢ ( 𝑋 × 𝑋 ) ∈ V |
16 |
|
cnex |
⊢ ℂ ∈ V |
17 |
|
sqrtf |
⊢ √ : ℂ ⟶ ℂ |
18 |
|
frn |
⊢ ( √ : ℂ ⟶ ℂ → ran √ ⊆ ℂ ) |
19 |
17 18
|
ax-mp |
⊢ ran √ ⊆ ℂ |
20 |
16 19
|
ssexi |
⊢ ran √ ∈ V |
21 |
|
p0ex |
⊢ { ∅ } ∈ V |
22 |
20 21
|
unex |
⊢ ( ran √ ∪ { ∅ } ) ∈ V |
23 |
|
fex2 |
⊢ ( ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ ( ran √ ∪ { ∅ } ) ∧ ( 𝑋 × 𝑋 ) ∈ V ∧ ( ran √ ∪ { ∅ } ) ∈ V ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ∈ V ) |
24 |
12 15 22 23
|
mp3an |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ∈ V |
25 |
6 7 24
|
fvmpt |
⊢ ( 𝐼 ∈ Fin → ( ℝn ‘ 𝐼 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |