Metamath Proof Explorer


Theorem rrx0

Description: The zero ("origin") in a generalized real Euclidean space. (Contributed by AV, 11-Feb-2023)

Ref Expression
Hypotheses rrxsca.r 𝐻 = ( ℝ^ ‘ 𝐼 )
rrx0.0 0 = ( 𝐼 × { 0 } )
Assertion rrx0 ( 𝐼𝑉 → ( 0g𝐻 ) = 0 )

Proof

Step Hyp Ref Expression
1 rrxsca.r 𝐻 = ( ℝ^ ‘ 𝐼 )
2 rrx0.0 0 = ( 𝐼 × { 0 } )
3 1 rrxval ( 𝐼𝑉𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) )
4 3 fveq2d ( 𝐼𝑉 → ( 0g𝐻 ) = ( 0g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) )
5 eqid ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) )
6 eqid ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) )
7 eqid ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) )
8 5 6 7 tcphval ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) )
9 8 a1i ( 𝐼𝑉 → ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) )
10 9 fveq2d ( 𝐼𝑉 → ( 0g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( 0g ‘ ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) ) )
11 fvexd ( 𝐼𝑉 → ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∈ V )
12 11 mptexd ( 𝐼𝑉 → ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ∈ V )
13 eqid ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) = ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) )
14 eqid ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 0g ‘ ( ℝfld freeLMod 𝐼 ) )
15 13 14 tng0 ( ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ∈ V → ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 0g ‘ ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) ) )
16 12 15 syl ( 𝐼𝑉 → ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 0g ‘ ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) ) )
17 refld fld ∈ Field
18 isfld ( ℝfld ∈ Field ↔ ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) )
19 drngring ( ℝfld ∈ DivRing → ℝfld ∈ Ring )
20 19 adantr ( ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) → ℝfld ∈ Ring )
21 18 20 sylbi ( ℝfld ∈ Field → ℝfld ∈ Ring )
22 17 21 ax-mp fld ∈ Ring
23 eqid ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 )
24 re0g 0 = ( 0g ‘ ℝfld )
25 23 24 frlm0 ( ( ℝfld ∈ Ring ∧ 𝐼𝑉 ) → ( 𝐼 × { 0 } ) = ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) )
26 22 25 mpan ( 𝐼𝑉 → ( 𝐼 × { 0 } ) = ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) )
27 2 26 eqtr2id ( 𝐼𝑉 → ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = 0 )
28 10 16 27 3eqtr2d ( 𝐼𝑉 → ( 0g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = 0 )
29 4 28 eqtrd ( 𝐼𝑉 → ( 0g𝐻 ) = 0 )