| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrx0el.0 |
⊢ 0 = ( 𝐼 × { 0 } ) |
| 2 |
|
rrx0el.p |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
| 3 |
|
c0ex |
⊢ 0 ∈ V |
| 4 |
3
|
fconst |
⊢ ( 𝐼 × { 0 } ) : 𝐼 ⟶ { 0 } |
| 5 |
4
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × { 0 } ) : 𝐼 ⟶ { 0 } ) |
| 6 |
|
0re |
⊢ 0 ∈ ℝ |
| 7 |
|
snssg |
⊢ ( 0 ∈ ℝ → ( 0 ∈ ℝ ↔ { 0 } ⊆ ℝ ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ( 0 ∈ ℝ ↔ { 0 } ⊆ ℝ ) |
| 9 |
6 8
|
mpbi |
⊢ { 0 } ⊆ ℝ |
| 10 |
9
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → { 0 } ⊆ ℝ ) |
| 11 |
5 10
|
fssd |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × { 0 } ) : 𝐼 ⟶ ℝ ) |
| 12 |
|
reex |
⊢ ℝ ∈ V |
| 13 |
12
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → ℝ ∈ V ) |
| 14 |
|
id |
⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉 ) |
| 15 |
13 14
|
elmapd |
⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝐼 × { 0 } ) ∈ ( ℝ ↑m 𝐼 ) ↔ ( 𝐼 × { 0 } ) : 𝐼 ⟶ ℝ ) ) |
| 16 |
11 15
|
mpbird |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × { 0 } ) ∈ ( ℝ ↑m 𝐼 ) ) |
| 17 |
16 1 2
|
3eltr4g |
⊢ ( 𝐼 ∈ 𝑉 → 0 ∈ 𝑃 ) |