| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrx2line.i |
⊢ 𝐼 = { 1 , 2 } |
| 2 |
|
rrx2line.e |
⊢ 𝐸 = ( ℝ^ ‘ 𝐼 ) |
| 3 |
|
rrx2line.b |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
| 4 |
|
rrx2line.l |
⊢ 𝐿 = ( LineM ‘ 𝐸 ) |
| 5 |
|
rrx2linesl.s |
⊢ 𝑆 = ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) / ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ) |
| 6 |
|
fveq1 |
⊢ ( 𝑋 = 𝑌 → ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ) |
| 7 |
6
|
necon3i |
⊢ ( ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) → 𝑋 ≠ 𝑌 ) |
| 8 |
1 2 3 4
|
rrx2line |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 𝐿 𝑌 ) = { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ ( ( 𝑝 ‘ 1 ) = ( ( ( 1 − 𝑡 ) · ( 𝑋 ‘ 1 ) ) + ( 𝑡 · ( 𝑌 ‘ 1 ) ) ) ∧ ( 𝑝 ‘ 2 ) = ( ( ( 1 − 𝑡 ) · ( 𝑋 ‘ 2 ) ) + ( 𝑡 · ( 𝑌 ‘ 2 ) ) ) ) } ) |
| 9 |
7 8
|
syl3an3 |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) → ( 𝑋 𝐿 𝑌 ) = { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ ( ( 𝑝 ‘ 1 ) = ( ( ( 1 − 𝑡 ) · ( 𝑋 ‘ 1 ) ) + ( 𝑡 · ( 𝑌 ‘ 1 ) ) ) ∧ ( 𝑝 ‘ 2 ) = ( ( ( 1 − 𝑡 ) · ( 𝑋 ‘ 2 ) ) + ( 𝑡 · ( 𝑌 ‘ 2 ) ) ) ) } ) |
| 10 |
|
reex |
⊢ ℝ ∈ V |
| 11 |
|
prex |
⊢ { 1 , 2 } ∈ V |
| 12 |
1 11
|
eqeltri |
⊢ 𝐼 ∈ V |
| 13 |
10 12
|
elmap |
⊢ ( 𝑝 ∈ ( ℝ ↑m 𝐼 ) ↔ 𝑝 : 𝐼 ⟶ ℝ ) |
| 14 |
|
id |
⊢ ( 𝑝 : 𝐼 ⟶ ℝ → 𝑝 : 𝐼 ⟶ ℝ ) |
| 15 |
|
1ex |
⊢ 1 ∈ V |
| 16 |
15
|
prid1 |
⊢ 1 ∈ { 1 , 2 } |
| 17 |
16 1
|
eleqtrri |
⊢ 1 ∈ 𝐼 |
| 18 |
17
|
a1i |
⊢ ( 𝑝 : 𝐼 ⟶ ℝ → 1 ∈ 𝐼 ) |
| 19 |
14 18
|
ffvelcdmd |
⊢ ( 𝑝 : 𝐼 ⟶ ℝ → ( 𝑝 ‘ 1 ) ∈ ℝ ) |
| 20 |
13 19
|
sylbi |
⊢ ( 𝑝 ∈ ( ℝ ↑m 𝐼 ) → ( 𝑝 ‘ 1 ) ∈ ℝ ) |
| 21 |
20 3
|
eleq2s |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 1 ) ∈ ℝ ) |
| 22 |
21
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑝 ‘ 1 ) ∈ ℝ ) |
| 23 |
10 12
|
elmap |
⊢ ( 𝑋 ∈ ( ℝ ↑m 𝐼 ) ↔ 𝑋 : 𝐼 ⟶ ℝ ) |
| 24 |
|
id |
⊢ ( 𝑋 : 𝐼 ⟶ ℝ → 𝑋 : 𝐼 ⟶ ℝ ) |
| 25 |
17
|
a1i |
⊢ ( 𝑋 : 𝐼 ⟶ ℝ → 1 ∈ 𝐼 ) |
| 26 |
24 25
|
ffvelcdmd |
⊢ ( 𝑋 : 𝐼 ⟶ ℝ → ( 𝑋 ‘ 1 ) ∈ ℝ ) |
| 27 |
23 26
|
sylbi |
⊢ ( 𝑋 ∈ ( ℝ ↑m 𝐼 ) → ( 𝑋 ‘ 1 ) ∈ ℝ ) |
| 28 |
27 3
|
eleq2s |
⊢ ( 𝑋 ∈ 𝑃 → ( 𝑋 ‘ 1 ) ∈ ℝ ) |
| 29 |
28
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) → ( 𝑋 ‘ 1 ) ∈ ℝ ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑋 ‘ 1 ) ∈ ℝ ) |
| 31 |
10 12
|
elmap |
⊢ ( 𝑌 ∈ ( ℝ ↑m 𝐼 ) ↔ 𝑌 : 𝐼 ⟶ ℝ ) |
| 32 |
|
id |
⊢ ( 𝑌 : 𝐼 ⟶ ℝ → 𝑌 : 𝐼 ⟶ ℝ ) |
| 33 |
17
|
a1i |
⊢ ( 𝑌 : 𝐼 ⟶ ℝ → 1 ∈ 𝐼 ) |
| 34 |
32 33
|
ffvelcdmd |
⊢ ( 𝑌 : 𝐼 ⟶ ℝ → ( 𝑌 ‘ 1 ) ∈ ℝ ) |
| 35 |
31 34
|
sylbi |
⊢ ( 𝑌 ∈ ( ℝ ↑m 𝐼 ) → ( 𝑌 ‘ 1 ) ∈ ℝ ) |
| 36 |
35 3
|
eleq2s |
⊢ ( 𝑌 ∈ 𝑃 → ( 𝑌 ‘ 1 ) ∈ ℝ ) |
| 37 |
36
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) → ( 𝑌 ‘ 1 ) ∈ ℝ ) |
| 38 |
37
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑌 ‘ 1 ) ∈ ℝ ) |
| 39 |
|
simpl3 |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) |
| 40 |
|
2ex |
⊢ 2 ∈ V |
| 41 |
40
|
prid2 |
⊢ 2 ∈ { 1 , 2 } |
| 42 |
41 1
|
eleqtrri |
⊢ 2 ∈ 𝐼 |
| 43 |
42
|
a1i |
⊢ ( 𝑝 : 𝐼 ⟶ ℝ → 2 ∈ 𝐼 ) |
| 44 |
14 43
|
ffvelcdmd |
⊢ ( 𝑝 : 𝐼 ⟶ ℝ → ( 𝑝 ‘ 2 ) ∈ ℝ ) |
| 45 |
13 44
|
sylbi |
⊢ ( 𝑝 ∈ ( ℝ ↑m 𝐼 ) → ( 𝑝 ‘ 2 ) ∈ ℝ ) |
| 46 |
45 3
|
eleq2s |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 2 ) ∈ ℝ ) |
| 47 |
46
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑝 ‘ 2 ) ∈ ℝ ) |
| 48 |
42
|
a1i |
⊢ ( 𝑋 : 𝐼 ⟶ ℝ → 2 ∈ 𝐼 ) |
| 49 |
24 48
|
ffvelcdmd |
⊢ ( 𝑋 : 𝐼 ⟶ ℝ → ( 𝑋 ‘ 2 ) ∈ ℝ ) |
| 50 |
23 49
|
sylbi |
⊢ ( 𝑋 ∈ ( ℝ ↑m 𝐼 ) → ( 𝑋 ‘ 2 ) ∈ ℝ ) |
| 51 |
50 3
|
eleq2s |
⊢ ( 𝑋 ∈ 𝑃 → ( 𝑋 ‘ 2 ) ∈ ℝ ) |
| 52 |
51
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) → ( 𝑋 ‘ 2 ) ∈ ℝ ) |
| 53 |
52
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑋 ‘ 2 ) ∈ ℝ ) |
| 54 |
3
|
eleq2i |
⊢ ( 𝑌 ∈ 𝑃 ↔ 𝑌 ∈ ( ℝ ↑m 𝐼 ) ) |
| 55 |
54 31
|
bitri |
⊢ ( 𝑌 ∈ 𝑃 ↔ 𝑌 : 𝐼 ⟶ ℝ ) |
| 56 |
42
|
a1i |
⊢ ( 𝑌 : 𝐼 ⟶ ℝ → 2 ∈ 𝐼 ) |
| 57 |
32 56
|
ffvelcdmd |
⊢ ( 𝑌 : 𝐼 ⟶ ℝ → ( 𝑌 ‘ 2 ) ∈ ℝ ) |
| 58 |
55 57
|
sylbi |
⊢ ( 𝑌 ∈ 𝑃 → ( 𝑌 ‘ 2 ) ∈ ℝ ) |
| 59 |
58
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) → ( 𝑌 ‘ 2 ) ∈ ℝ ) |
| 60 |
59
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑌 ‘ 2 ) ∈ ℝ ) |
| 61 |
22 30 38 39 47 53 60 5
|
affinecomb1 |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ∃ 𝑡 ∈ ℝ ( ( 𝑝 ‘ 1 ) = ( ( ( 1 − 𝑡 ) · ( 𝑋 ‘ 1 ) ) + ( 𝑡 · ( 𝑌 ‘ 1 ) ) ) ∧ ( 𝑝 ‘ 2 ) = ( ( ( 1 − 𝑡 ) · ( 𝑋 ‘ 2 ) ) + ( 𝑡 · ( 𝑌 ‘ 2 ) ) ) ) ↔ ( 𝑝 ‘ 2 ) = ( ( 𝑆 · ( ( 𝑝 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ) + ( 𝑋 ‘ 2 ) ) ) ) |
| 62 |
61
|
rabbidva |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) → { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ ( ( 𝑝 ‘ 1 ) = ( ( ( 1 − 𝑡 ) · ( 𝑋 ‘ 1 ) ) + ( 𝑡 · ( 𝑌 ‘ 1 ) ) ) ∧ ( 𝑝 ‘ 2 ) = ( ( ( 1 − 𝑡 ) · ( 𝑋 ‘ 2 ) ) + ( 𝑡 · ( 𝑌 ‘ 2 ) ) ) ) } = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 ‘ 2 ) = ( ( 𝑆 · ( ( 𝑝 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ) + ( 𝑋 ‘ 2 ) ) } ) |
| 63 |
9 62
|
eqtrd |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) → ( 𝑋 𝐿 𝑌 ) = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 ‘ 2 ) = ( ( 𝑆 · ( ( 𝑝 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ) + ( 𝑋 ‘ 2 ) ) } ) |