| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rrx2line.i | 
							⊢ 𝐼  =  { 1 ,  2 }  | 
						
						
							| 2 | 
							
								
							 | 
							rrx2line.e | 
							⊢ 𝐸  =  ( ℝ^ ‘ 𝐼 )  | 
						
						
							| 3 | 
							
								
							 | 
							rrx2line.b | 
							⊢ 𝑃  =  ( ℝ  ↑m  𝐼 )  | 
						
						
							| 4 | 
							
								
							 | 
							rrx2line.l | 
							⊢ 𝐿  =  ( LineM ‘ 𝐸 )  | 
						
						
							| 5 | 
							
								
							 | 
							rrx2linest.a | 
							⊢ 𝐴  =  ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							rrx2linest.b | 
							⊢ 𝐵  =  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							rrx2linest.c | 
							⊢ 𝐶  =  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  𝑋  ∈  𝑃 )  | 
						
						
							| 9 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  𝑌  ∈  𝑃 )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							anim1i | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  ∧  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) )  →  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) ) )  | 
						
						
							| 13 | 
							
								1
							 | 
							raleqi | 
							⊢ ( ∀ 𝑖  ∈  𝐼 ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 )  ↔  ∀ 𝑖  ∈  { 1 ,  2 } ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							1ex | 
							⊢ 1  ∈  V  | 
						
						
							| 15 | 
							
								
							 | 
							2ex | 
							⊢ 2  ∈  V  | 
						
						
							| 16 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  1  →  ( 𝑋 ‘ 𝑖 )  =  ( 𝑋 ‘ 1 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  1  →  ( 𝑌 ‘ 𝑖 )  =  ( 𝑌 ‘ 1 ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							eqeq12d | 
							⊢ ( 𝑖  =  1  →  ( ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 )  ↔  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  2  →  ( 𝑋 ‘ 𝑖 )  =  ( 𝑋 ‘ 2 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  2  →  ( 𝑌 ‘ 𝑖 )  =  ( 𝑌 ‘ 2 ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							eqeq12d | 
							⊢ ( 𝑖  =  2  →  ( ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 )  ↔  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) ) )  | 
						
						
							| 22 | 
							
								14 15 18 21
							 | 
							ralpr | 
							⊢ ( ∀ 𝑖  ∈  { 1 ,  2 } ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 )  ↔  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) ) )  | 
						
						
							| 23 | 
							
								13 22
							 | 
							bitri | 
							⊢ ( ∀ 𝑖  ∈  𝐼 ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 )  ↔  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) ) )  | 
						
						
							| 24 | 
							
								12 23
							 | 
							sylibr | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  ∧  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) )  →  ∀ 𝑖  ∈  𝐼 ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							elmapfn | 
							⊢ ( 𝑋  ∈  ( ℝ  ↑m  𝐼 )  →  𝑋  Fn  𝐼 )  | 
						
						
							| 26 | 
							
								25 3
							 | 
							eleq2s | 
							⊢ ( 𝑋  ∈  𝑃  →  𝑋  Fn  𝐼 )  | 
						
						
							| 27 | 
							
								
							 | 
							elmapfn | 
							⊢ ( 𝑌  ∈  ( ℝ  ↑m  𝐼 )  →  𝑌  Fn  𝐼 )  | 
						
						
							| 28 | 
							
								27 3
							 | 
							eleq2s | 
							⊢ ( 𝑌  ∈  𝑃  →  𝑌  Fn  𝐼 )  | 
						
						
							| 29 | 
							
								26 28
							 | 
							anim12i | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( 𝑋  Fn  𝐼  ∧  𝑌  Fn  𝐼 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  ∧  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) )  →  ( 𝑋  Fn  𝐼  ∧  𝑌  Fn  𝐼 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							eqfnfv | 
							⊢ ( ( 𝑋  Fn  𝐼  ∧  𝑌  Fn  𝐼 )  →  ( 𝑋  =  𝑌  ↔  ∀ 𝑖  ∈  𝐼 ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 ) ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							syl | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  ∧  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) )  →  ( 𝑋  =  𝑌  ↔  ∀ 𝑖  ∈  𝐼 ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 ) ) )  | 
						
						
							| 33 | 
							
								24 32
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  ∧  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) )  →  𝑋  =  𝑌 )  | 
						
						
							| 34 | 
							
								33
							 | 
							ex | 
							⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 )  →  𝑋  =  𝑌 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							necon3d | 
							⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑋  ≠  𝑌  →  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							ex | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  ( 𝑋  ≠  𝑌  →  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							com23 | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( 𝑋  ≠  𝑌  →  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							3impia | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							imp | 
							⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  | 
						
						
							| 40 | 
							
								1 2 3 4
							 | 
							rrx2vlinest | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 ) } )  | 
						
						
							| 41 | 
							
								8 9 10 39 40
							 | 
							syl112anc | 
							⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 ) } )  | 
						
						
							| 42 | 
							
								
							 | 
							ancom | 
							⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  ↔  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  𝑝  ∈  𝑃 )  | 
						
						
							| 45 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  | 
						
						
							| 46 | 
							
								5
							 | 
							oveq1i | 
							⊢ ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							a1i | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) ) )  | 
						
						
							| 48 | 
							
								
							 | 
							oveq2 | 
							⊢ ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  =  ( ( 𝑌 ‘ 1 )  −  ( 𝑌 ‘ 1 ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							adantl | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  =  ( ( 𝑌 ‘ 1 )  −  ( 𝑌 ‘ 1 ) ) )  | 
						
						
							| 50 | 
							
								1 3
							 | 
							rrx2pxel | 
							⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 1 )  ∈  ℝ )  | 
						
						
							| 51 | 
							
								50
							 | 
							recnd | 
							⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 1 )  ∈  ℂ )  | 
						
						
							| 52 | 
							
								51
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑌 ‘ 1 )  ∈  ℂ )  | 
						
						
							| 53 | 
							
								52
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑌 ‘ 1 )  ∈  ℂ )  | 
						
						
							| 54 | 
							
								53
							 | 
							subidd | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( ( 𝑌 ‘ 1 )  −  ( 𝑌 ‘ 1 ) )  =  0 )  | 
						
						
							| 55 | 
							
								49 54
							 | 
							eqtrd | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  =  0 )  | 
						
						
							| 56 | 
							
								55
							 | 
							oveq1d | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( 0  ·  ( 𝑝 ‘ 2 ) ) )  | 
						
						
							| 57 | 
							
								1 3
							 | 
							rrx2pyel | 
							⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 2 )  ∈  ℝ )  | 
						
						
							| 58 | 
							
								57
							 | 
							recnd | 
							⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 2 )  ∈  ℂ )  | 
						
						
							| 59 | 
							
								58
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑝 ‘ 2 )  ∈  ℂ )  | 
						
						
							| 60 | 
							
								59
							 | 
							mul02d | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 0  ·  ( 𝑝 ‘ 2 ) )  =  0 )  | 
						
						
							| 61 | 
							
								47 56 60
							 | 
							3eqtrd | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  0 )  | 
						
						
							| 62 | 
							
								6
							 | 
							oveq1i | 
							⊢ ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  =  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							a1i | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  =  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) ) )  | 
						
						
							| 64 | 
							
								
							 | 
							oveq1 | 
							⊢ ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) )  =  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							oveq2d | 
							⊢ ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) )  =  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) )  | 
						
						
							| 66 | 
							
								7 65
							 | 
							eqtrid | 
							⊢ ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  𝐶  =  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							adantl | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  𝐶  =  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) )  | 
						
						
							| 68 | 
							
								63 67
							 | 
							oveq12d | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) )  | 
						
						
							| 69 | 
							
								61 68
							 | 
							eqeq12d | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 )  ↔  0  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) ) )  | 
						
						
							| 70 | 
							
								43 44 45 69
							 | 
							syl21anc | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 )  ↔  0  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) ) )  | 
						
						
							| 71 | 
							
								1 3
							 | 
							rrx2pyel | 
							⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 2 )  ∈  ℝ )  | 
						
						
							| 72 | 
							
								71
							 | 
							recnd | 
							⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 2 )  ∈  ℂ )  | 
						
						
							| 73 | 
							
								72
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑌 ‘ 2 )  ∈  ℂ )  | 
						
						
							| 74 | 
							
								52 73
							 | 
							mulcomd | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) )  =  ( ( 𝑌 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							oveq2d | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) )  =  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) ) ) )  | 
						
						
							| 76 | 
							
								1 3
							 | 
							rrx2pyel | 
							⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 2 )  ∈  ℝ )  | 
						
						
							| 77 | 
							
								76
							 | 
							recnd | 
							⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 2 )  ∈  ℂ )  | 
						
						
							| 78 | 
							
								77
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋 ‘ 2 )  ∈  ℂ )  | 
						
						
							| 79 | 
							
								78 73 52
							 | 
							subdird | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  =  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) ) ) )  | 
						
						
							| 80 | 
							
								75 79
							 | 
							eqtr4d | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) )  =  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) )  =  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							oveq2d | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							eqeq2d | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 0  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  0  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) ) ) )  | 
						
						
							| 84 | 
							
								
							 | 
							eqcom | 
							⊢ ( 0  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  ↔  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  =  0 )  | 
						
						
							| 85 | 
							
								84
							 | 
							a1i | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 0  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  ↔  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  =  0 ) )  | 
						
						
							| 86 | 
							
								73
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑌 ‘ 2 )  ∈  ℂ )  | 
						
						
							| 87 | 
							
								78
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑋 ‘ 2 )  ∈  ℂ )  | 
						
						
							| 88 | 
							
								86 87
							 | 
							subcld | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ∈  ℂ )  | 
						
						
							| 89 | 
							
								1 3
							 | 
							rrx2pxel | 
							⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 1 )  ∈  ℝ )  | 
						
						
							| 90 | 
							
								89
							 | 
							recnd | 
							⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 1 )  ∈  ℂ )  | 
						
						
							| 91 | 
							
								90
							 | 
							adantl | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑝 ‘ 1 )  ∈  ℂ )  | 
						
						
							| 92 | 
							
								88 91
							 | 
							mulcld | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  ∈  ℂ )  | 
						
						
							| 93 | 
							
								87 86
							 | 
							subcld | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ∈  ℂ )  | 
						
						
							| 94 | 
							
								52
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑌 ‘ 1 )  ∈  ℂ )  | 
						
						
							| 95 | 
							
								93 94
							 | 
							mulcld | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  ∈  ℂ )  | 
						
						
							| 96 | 
							
								
							 | 
							addeq0 | 
							⊢ ( ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  ∈  ℂ  ∧  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  ∈  ℂ )  →  ( ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  =  0  ↔  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  =  - ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) ) )  | 
						
						
							| 97 | 
							
								92 95 96
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  =  0  ↔  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  =  - ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) ) )  | 
						
						
							| 98 | 
							
								93 94
							 | 
							mulneg1d | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( - ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  =  - ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  | 
						
						
							| 99 | 
							
								87 86
							 | 
							negsubdi2d | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  - ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  =  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) ) )  | 
						
						
							| 100 | 
							
								99
							 | 
							oveq1d | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( - ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  =  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  | 
						
						
							| 101 | 
							
								98 100
							 | 
							eqtr3d | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  - ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  =  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							eqeq2d | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  =  - ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  ↔  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  =  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) ) )  | 
						
						
							| 103 | 
							
								
							 | 
							necom | 
							⊢ ( ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 )  ↔  ( 𝑌 ‘ 2 )  ≠  ( 𝑋 ‘ 2 ) )  | 
						
						
							| 104 | 
							
								39 42 103
							 | 
							3imtr3i | 
							⊢ ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑌 ‘ 2 )  ≠  ( 𝑋 ‘ 2 ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑌 ‘ 2 )  ≠  ( 𝑋 ‘ 2 ) )  | 
						
						
							| 106 | 
							
								86 87 105
							 | 
							subne0d | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ≠  0 )  | 
						
						
							| 107 | 
							
								91 94 88 106
							 | 
							mulcand | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  =  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  ↔  ( 𝑝 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) )  | 
						
						
							| 108 | 
							
								102 107
							 | 
							bitrd | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  =  - ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  ↔  ( 𝑝 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) )  | 
						
						
							| 109 | 
							
								85 97 108
							 | 
							3bitrd | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 0  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  ↔  ( 𝑝 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) )  | 
						
						
							| 110 | 
							
								83 109
							 | 
							bitrd | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 0  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝑝 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) )  | 
						
						
							| 111 | 
							
								
							 | 
							simpl | 
							⊢ ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  | 
						
						
							| 112 | 
							
								111
							 | 
							eqcomd | 
							⊢ ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑌 ‘ 1 )  =  ( 𝑋 ‘ 1 ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑌 ‘ 1 )  =  ( 𝑋 ‘ 1 ) )  | 
						
						
							| 114 | 
							
								113
							 | 
							eqeq2d | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝑝 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ↔  ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 ) ) )  | 
						
						
							| 115 | 
							
								70 110 114
							 | 
							3bitrrd | 
							⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 )  ↔  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) ) )  | 
						
						
							| 116 | 
							
								115
							 | 
							rabbidva | 
							⊢ ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 ) }  =  { 𝑝  ∈  𝑃  ∣  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) } )  | 
						
						
							| 117 | 
							
								42 116
							 | 
							sylbi | 
							⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 ) }  =  { 𝑝  ∈  𝑃  ∣  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) } )  | 
						
						
							| 118 | 
							
								41 117
							 | 
							eqtrd | 
							⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) } )  | 
						
						
							| 119 | 
							
								1 2 3 4
							 | 
							rrx2line | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) ) } )  | 
						
						
							| 120 | 
							
								119
							 | 
							adantr | 
							⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ¬  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) ) } )  | 
						
						
							| 121 | 
							
								
							 | 
							df-ne | 
							⊢ ( ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 )  ↔  ¬  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  | 
						
						
							| 122 | 
							
								89
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑝 ‘ 1 )  ∈  ℝ )  | 
						
						
							| 123 | 
							
								1 3
							 | 
							rrx2pxel | 
							⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 1 )  ∈  ℝ )  | 
						
						
							| 124 | 
							
								123
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋 ‘ 1 )  ∈  ℝ )  | 
						
						
							| 125 | 
							
								124
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 ‘ 1 )  ∈  ℝ )  | 
						
						
							| 126 | 
							
								50
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑌 ‘ 1 )  ∈  ℝ )  | 
						
						
							| 127 | 
							
								126
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑌 ‘ 1 )  ∈  ℝ )  | 
						
						
							| 128 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  | 
						
						
							| 129 | 
							
								57
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑝 ‘ 2 )  ∈  ℝ )  | 
						
						
							| 130 | 
							
								76
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋 ‘ 2 )  ∈  ℝ )  | 
						
						
							| 131 | 
							
								130
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 ‘ 2 )  ∈  ℝ )  | 
						
						
							| 132 | 
							
								71
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑌 ‘ 2 )  ∈  ℝ )  | 
						
						
							| 133 | 
							
								132
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑌 ‘ 2 )  ∈  ℝ )  | 
						
						
							| 134 | 
							
								122 125 127 128 129 131 133
							 | 
							affinecomb2 | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) ) )  | 
						
						
							| 135 | 
							
								5
							 | 
							eqcomi | 
							⊢ ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  =  𝐴  | 
						
						
							| 136 | 
							
								135
							 | 
							oveq1i | 
							⊢ ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  | 
						
						
							| 137 | 
							
								6
							 | 
							eqcomi | 
							⊢ ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  =  𝐵  | 
						
						
							| 138 | 
							
								137
							 | 
							oveq1i | 
							⊢ ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  =  ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  | 
						
						
							| 139 | 
							
								7
							 | 
							eqcomi | 
							⊢ ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) )  =  𝐶  | 
						
						
							| 140 | 
							
								138 139
							 | 
							oveq12i | 
							⊢ ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 )  | 
						
						
							| 141 | 
							
								136 140
							 | 
							eqeq12i | 
							⊢ ( ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) )  | 
						
						
							| 142 | 
							
								134 141
							 | 
							bitrdi | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) ) )  | 
						
						
							| 143 | 
							
								142
							 | 
							expcom | 
							⊢ ( ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 )  →  ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  →  ( ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) ) ) )  | 
						
						
							| 144 | 
							
								121 143
							 | 
							sylbir | 
							⊢ ( ¬  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  →  ( ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) ) ) )  | 
						
						
							| 145 | 
							
								144
							 | 
							expd | 
							⊢ ( ¬  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑝  ∈  𝑃  →  ( ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) ) ) ) )  | 
						
						
							| 146 | 
							
								145
							 | 
							impcom | 
							⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ¬  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑝  ∈  𝑃  →  ( ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) ) ) )  | 
						
						
							| 147 | 
							
								146
							 | 
							imp | 
							⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ¬  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) ) )  | 
						
						
							| 148 | 
							
								147
							 | 
							rabbidva | 
							⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ¬  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) ) }  =  { 𝑝  ∈  𝑃  ∣  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) } )  | 
						
						
							| 149 | 
							
								120 148
							 | 
							eqtrd | 
							⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ¬  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) } )  | 
						
						
							| 150 | 
							
								118 149
							 | 
							pm2.61dan | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) } )  |