| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rrx2pnecoorneor.i | 
							⊢ 𝐼  =  { 1 ,  2 }  | 
						
						
							| 2 | 
							
								
							 | 
							rrx2pnecoorneor.b | 
							⊢ 𝑃  =  ( ℝ  ↑m  𝐼 )  | 
						
						
							| 3 | 
							
								
							 | 
							rrx2pnedifcoorneor.a | 
							⊢ 𝐴  =  ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							rrx2pnedifcoorneorr.b | 
							⊢ 𝐵  =  ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  =  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  | 
						
						
							| 6 | 
							
								1 2 3 5
							 | 
							rrx2pnedifcoorneor | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝐴  ≠  0  ∨  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ≠  0 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( 𝑌 ‘ 2 )  =  ( 𝑋 ‘ 2 )  ↔  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝑌 ‘ 2 )  =  ( 𝑋 ‘ 2 )  ↔  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) ) )  | 
						
						
							| 9 | 
							
								1 2
							 | 
							rrx2pyel | 
							⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 2 )  ∈  ℝ )  | 
						
						
							| 10 | 
							
								9
							 | 
							recnd | 
							⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 2 )  ∈  ℂ )  | 
						
						
							| 11 | 
							
								1 2
							 | 
							rrx2pyel | 
							⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 2 )  ∈  ℝ )  | 
						
						
							| 12 | 
							
								11
							 | 
							recnd | 
							⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 2 )  ∈  ℂ )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							anim12i | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( ( 𝑋 ‘ 2 )  ∈  ℂ  ∧  ( 𝑌 ‘ 2 )  ∈  ℂ ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							ancomd | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( ( 𝑌 ‘ 2 )  ∈  ℂ  ∧  ( 𝑋 ‘ 2 )  ∈  ℂ ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							3adant3 | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝑌 ‘ 2 )  ∈  ℂ  ∧  ( 𝑋 ‘ 2 )  ∈  ℂ ) )  | 
						
						
							| 16 | 
							
								
							 | 
							subeq0 | 
							⊢ ( ( ( 𝑌 ‘ 2 )  ∈  ℂ  ∧  ( 𝑋 ‘ 2 )  ∈  ℂ )  →  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  =  0  ↔  ( 𝑌 ‘ 2 )  =  ( 𝑋 ‘ 2 ) ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  =  0  ↔  ( 𝑌 ‘ 2 )  =  ( 𝑋 ‘ 2 ) ) )  | 
						
						
							| 18 | 
							
								13
							 | 
							3adant3 | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝑋 ‘ 2 )  ∈  ℂ  ∧  ( 𝑌 ‘ 2 )  ∈  ℂ ) )  | 
						
						
							| 19 | 
							
								
							 | 
							subeq0 | 
							⊢ ( ( ( 𝑋 ‘ 2 )  ∈  ℂ  ∧  ( 𝑌 ‘ 2 )  ∈  ℂ )  →  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  =  0  ↔  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  =  0  ↔  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) ) )  | 
						
						
							| 21 | 
							
								8 17 20
							 | 
							3bitr4d | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  =  0  ↔  ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  =  0 ) )  | 
						
						
							| 22 | 
							
								4
							 | 
							eqcomi | 
							⊢ ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  =  𝐵  | 
						
						
							| 23 | 
							
								22
							 | 
							eqeq1i | 
							⊢ ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  =  0  ↔  𝐵  =  0 )  | 
						
						
							| 24 | 
							
								21 23
							 | 
							bitrdi | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  =  0  ↔  𝐵  =  0 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							necon3bid | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ≠  0  ↔  𝐵  ≠  0 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							orbi2d | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝐴  ≠  0  ∨  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ≠  0 )  ↔  ( 𝐴  ≠  0  ∨  𝐵  ≠  0 ) ) )  | 
						
						
							| 27 | 
							
								6 26
							 | 
							mpbid | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝐴  ≠  0  ∨  𝐵  ≠  0 ) )  |