Metamath Proof Explorer
Description: The x-coordinate of a point in a real Euclidean space of dimension 2 is
a real number. (Contributed by AV, 2-Feb-2023)
|
|
Ref |
Expression |
|
Hypotheses |
rrx2px.i |
⊢ 𝐼 = { 1 , 2 } |
|
|
rrx2px.b |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
|
Assertion |
rrx2pxel |
⊢ ( 𝑋 ∈ 𝑃 → ( 𝑋 ‘ 1 ) ∈ ℝ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rrx2px.i |
⊢ 𝐼 = { 1 , 2 } |
2 |
|
rrx2px.b |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
3 |
|
id |
⊢ ( 𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑃 ) |
4 |
|
1ex |
⊢ 1 ∈ V |
5 |
4
|
prid1 |
⊢ 1 ∈ { 1 , 2 } |
6 |
5 1
|
eleqtrri |
⊢ 1 ∈ 𝐼 |
7 |
6
|
a1i |
⊢ ( 𝑋 ∈ 𝑃 → 1 ∈ 𝐼 ) |
8 |
2 3 7
|
mapfvd |
⊢ ( 𝑋 ∈ 𝑃 → ( 𝑋 ‘ 1 ) ∈ ℝ ) |