Metamath Proof Explorer


Theorem rrx2pxel

Description: The x-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023)

Ref Expression
Hypotheses rrx2px.i 𝐼 = { 1 , 2 }
rrx2px.b 𝑃 = ( ℝ ↑m 𝐼 )
Assertion rrx2pxel ( 𝑋𝑃 → ( 𝑋 ‘ 1 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 rrx2px.i 𝐼 = { 1 , 2 }
2 rrx2px.b 𝑃 = ( ℝ ↑m 𝐼 )
3 id ( 𝑋𝑃𝑋𝑃 )
4 1ex 1 ∈ V
5 4 prid1 1 ∈ { 1 , 2 }
6 5 1 eleqtrri 1 ∈ 𝐼
7 6 a1i ( 𝑋𝑃 → 1 ∈ 𝐼 )
8 2 3 7 mapfvd ( 𝑋𝑃 → ( 𝑋 ‘ 1 ) ∈ ℝ )