Metamath Proof Explorer


Theorem rrx2xpref1o

Description: There is a bijection between the set of ordered pairs of real numbers (the cartesian product of the real numbers) and the set of points in the two dimensional Euclidean plane (represented as mappings from { 1 , 2 } to the real numbers). (Contributed by AV, 12-Mar-2023)

Ref Expression
Hypotheses rrx2xpreen.r 𝑅 = ( ℝ ↑m { 1 , 2 } )
rrx2xpref1o.1 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { ⟨ 1 , 𝑥 ⟩ , ⟨ 2 , 𝑦 ⟩ } )
Assertion rrx2xpref1o 𝐹 : ( ℝ × ℝ ) –1-1-onto𝑅

Proof

Step Hyp Ref Expression
1 rrx2xpreen.r 𝑅 = ( ℝ ↑m { 1 , 2 } )
2 rrx2xpref1o.1 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { ⟨ 1 , 𝑥 ⟩ , ⟨ 2 , 𝑦 ⟩ } )
3 prex { ⟨ 1 , 𝑥 ⟩ , ⟨ 2 , 𝑦 ⟩ } ∈ V
4 2 3 fnmpoi 𝐹 Fn ( ℝ × ℝ )
5 1st2nd2 ( 𝑧 ∈ ( ℝ × ℝ ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
6 5 fveq2d ( 𝑧 ∈ ( ℝ × ℝ ) → ( 𝐹𝑧 ) = ( 𝐹 ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
7 df-ov ( ( 1st𝑧 ) 𝐹 ( 2nd𝑧 ) ) = ( 𝐹 ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
8 6 7 eqtr4di ( 𝑧 ∈ ( ℝ × ℝ ) → ( 𝐹𝑧 ) = ( ( 1st𝑧 ) 𝐹 ( 2nd𝑧 ) ) )
9 xp1st ( 𝑧 ∈ ( ℝ × ℝ ) → ( 1st𝑧 ) ∈ ℝ )
10 xp2nd ( 𝑧 ∈ ( ℝ × ℝ ) → ( 2nd𝑧 ) ∈ ℝ )
11 opeq2 ( 𝑥 = ( 1st𝑧 ) → ⟨ 1 , 𝑥 ⟩ = ⟨ 1 , ( 1st𝑧 ) ⟩ )
12 11 preq1d ( 𝑥 = ( 1st𝑧 ) → { ⟨ 1 , 𝑥 ⟩ , ⟨ 2 , 𝑦 ⟩ } = { ⟨ 1 , ( 1st𝑧 ) ⟩ , ⟨ 2 , 𝑦 ⟩ } )
13 opeq2 ( 𝑦 = ( 2nd𝑧 ) → ⟨ 2 , 𝑦 ⟩ = ⟨ 2 , ( 2nd𝑧 ) ⟩ )
14 13 preq2d ( 𝑦 = ( 2nd𝑧 ) → { ⟨ 1 , ( 1st𝑧 ) ⟩ , ⟨ 2 , 𝑦 ⟩ } = { ⟨ 1 , ( 1st𝑧 ) ⟩ , ⟨ 2 , ( 2nd𝑧 ) ⟩ } )
15 prex { ⟨ 1 , ( 1st𝑧 ) ⟩ , ⟨ 2 , ( 2nd𝑧 ) ⟩ } ∈ V
16 12 14 2 15 ovmpo ( ( ( 1st𝑧 ) ∈ ℝ ∧ ( 2nd𝑧 ) ∈ ℝ ) → ( ( 1st𝑧 ) 𝐹 ( 2nd𝑧 ) ) = { ⟨ 1 , ( 1st𝑧 ) ⟩ , ⟨ 2 , ( 2nd𝑧 ) ⟩ } )
17 9 10 16 syl2anc ( 𝑧 ∈ ( ℝ × ℝ ) → ( ( 1st𝑧 ) 𝐹 ( 2nd𝑧 ) ) = { ⟨ 1 , ( 1st𝑧 ) ⟩ , ⟨ 2 , ( 2nd𝑧 ) ⟩ } )
18 8 17 eqtrd ( 𝑧 ∈ ( ℝ × ℝ ) → ( 𝐹𝑧 ) = { ⟨ 1 , ( 1st𝑧 ) ⟩ , ⟨ 2 , ( 2nd𝑧 ) ⟩ } )
19 eqid { 1 , 2 } = { 1 , 2 }
20 19 1 prelrrx2 ( ( ( 1st𝑧 ) ∈ ℝ ∧ ( 2nd𝑧 ) ∈ ℝ ) → { ⟨ 1 , ( 1st𝑧 ) ⟩ , ⟨ 2 , ( 2nd𝑧 ) ⟩ } ∈ 𝑅 )
21 9 10 20 syl2anc ( 𝑧 ∈ ( ℝ × ℝ ) → { ⟨ 1 , ( 1st𝑧 ) ⟩ , ⟨ 2 , ( 2nd𝑧 ) ⟩ } ∈ 𝑅 )
22 18 21 eqeltrd ( 𝑧 ∈ ( ℝ × ℝ ) → ( 𝐹𝑧 ) ∈ 𝑅 )
23 22 rgen 𝑧 ∈ ( ℝ × ℝ ) ( 𝐹𝑧 ) ∈ 𝑅
24 ffnfv ( 𝐹 : ( ℝ × ℝ ) ⟶ 𝑅 ↔ ( 𝐹 Fn ( ℝ × ℝ ) ∧ ∀ 𝑧 ∈ ( ℝ × ℝ ) ( 𝐹𝑧 ) ∈ 𝑅 ) )
25 4 23 24 mpbir2an 𝐹 : ( ℝ × ℝ ) ⟶ 𝑅
26 opex ⟨ 1 , ( 1st𝑧 ) ⟩ ∈ V
27 opex ⟨ 2 , ( 2nd𝑧 ) ⟩ ∈ V
28 opex ⟨ 1 , ( 1st𝑤 ) ⟩ ∈ V
29 opex ⟨ 2 , ( 2nd𝑤 ) ⟩ ∈ V
30 26 27 28 29 preq12b ( { ⟨ 1 , ( 1st𝑧 ) ⟩ , ⟨ 2 , ( 2nd𝑧 ) ⟩ } = { ⟨ 1 , ( 1st𝑤 ) ⟩ , ⟨ 2 , ( 2nd𝑤 ) ⟩ } ↔ ( ( ⟨ 1 , ( 1st𝑧 ) ⟩ = ⟨ 1 , ( 1st𝑤 ) ⟩ ∧ ⟨ 2 , ( 2nd𝑧 ) ⟩ = ⟨ 2 , ( 2nd𝑤 ) ⟩ ) ∨ ( ⟨ 1 , ( 1st𝑧 ) ⟩ = ⟨ 2 , ( 2nd𝑤 ) ⟩ ∧ ⟨ 2 , ( 2nd𝑧 ) ⟩ = ⟨ 1 , ( 1st𝑤 ) ⟩ ) ) )
31 1ex 1 ∈ V
32 fvex ( 1st𝑧 ) ∈ V
33 31 32 opth ( ⟨ 1 , ( 1st𝑧 ) ⟩ = ⟨ 1 , ( 1st𝑤 ) ⟩ ↔ ( 1 = 1 ∧ ( 1st𝑧 ) = ( 1st𝑤 ) ) )
34 33 simprbi ( ⟨ 1 , ( 1st𝑧 ) ⟩ = ⟨ 1 , ( 1st𝑤 ) ⟩ → ( 1st𝑧 ) = ( 1st𝑤 ) )
35 2ex 2 ∈ V
36 fvex ( 2nd𝑧 ) ∈ V
37 35 36 opth ( ⟨ 2 , ( 2nd𝑧 ) ⟩ = ⟨ 2 , ( 2nd𝑤 ) ⟩ ↔ ( 2 = 2 ∧ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) )
38 37 simprbi ( ⟨ 2 , ( 2nd𝑧 ) ⟩ = ⟨ 2 , ( 2nd𝑤 ) ⟩ → ( 2nd𝑧 ) = ( 2nd𝑤 ) )
39 34 38 anim12i ( ( ⟨ 1 , ( 1st𝑧 ) ⟩ = ⟨ 1 , ( 1st𝑤 ) ⟩ ∧ ⟨ 2 , ( 2nd𝑧 ) ⟩ = ⟨ 2 , ( 2nd𝑤 ) ⟩ ) → ( ( 1st𝑧 ) = ( 1st𝑤 ) ∧ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) )
40 39 a1d ( ( ⟨ 1 , ( 1st𝑧 ) ⟩ = ⟨ 1 , ( 1st𝑤 ) ⟩ ∧ ⟨ 2 , ( 2nd𝑧 ) ⟩ = ⟨ 2 , ( 2nd𝑤 ) ⟩ ) → ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 1st𝑧 ) = ( 1st𝑤 ) ∧ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) ) )
41 31 32 opth ( ⟨ 1 , ( 1st𝑧 ) ⟩ = ⟨ 2 , ( 2nd𝑤 ) ⟩ ↔ ( 1 = 2 ∧ ( 1st𝑧 ) = ( 2nd𝑤 ) ) )
42 35 36 opth ( ⟨ 2 , ( 2nd𝑧 ) ⟩ = ⟨ 1 , ( 1st𝑤 ) ⟩ ↔ ( 2 = 1 ∧ ( 2nd𝑧 ) = ( 1st𝑤 ) ) )
43 1ne2 1 ≠ 2
44 eqneqall ( 1 = 2 → ( 1 ≠ 2 → ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 1st𝑧 ) = ( 1st𝑤 ) ∧ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) ) ) )
45 43 44 mpi ( 1 = 2 → ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 1st𝑧 ) = ( 1st𝑤 ) ∧ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) ) )
46 45 ad2antrr ( ( ( 1 = 2 ∧ ( 1st𝑧 ) = ( 2nd𝑤 ) ) ∧ ( 2 = 1 ∧ ( 2nd𝑧 ) = ( 1st𝑤 ) ) ) → ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 1st𝑧 ) = ( 1st𝑤 ) ∧ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) ) )
47 41 42 46 syl2anb ( ( ⟨ 1 , ( 1st𝑧 ) ⟩ = ⟨ 2 , ( 2nd𝑤 ) ⟩ ∧ ⟨ 2 , ( 2nd𝑧 ) ⟩ = ⟨ 1 , ( 1st𝑤 ) ⟩ ) → ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 1st𝑧 ) = ( 1st𝑤 ) ∧ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) ) )
48 40 47 jaoi ( ( ( ⟨ 1 , ( 1st𝑧 ) ⟩ = ⟨ 1 , ( 1st𝑤 ) ⟩ ∧ ⟨ 2 , ( 2nd𝑧 ) ⟩ = ⟨ 2 , ( 2nd𝑤 ) ⟩ ) ∨ ( ⟨ 1 , ( 1st𝑧 ) ⟩ = ⟨ 2 , ( 2nd𝑤 ) ⟩ ∧ ⟨ 2 , ( 2nd𝑧 ) ⟩ = ⟨ 1 , ( 1st𝑤 ) ⟩ ) ) → ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 1st𝑧 ) = ( 1st𝑤 ) ∧ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) ) )
49 30 48 sylbi ( { ⟨ 1 , ( 1st𝑧 ) ⟩ , ⟨ 2 , ( 2nd𝑧 ) ⟩ } = { ⟨ 1 , ( 1st𝑤 ) ⟩ , ⟨ 2 , ( 2nd𝑤 ) ⟩ } → ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 1st𝑧 ) = ( 1st𝑤 ) ∧ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) ) )
50 49 com12 ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( { ⟨ 1 , ( 1st𝑧 ) ⟩ , ⟨ 2 , ( 2nd𝑧 ) ⟩ } = { ⟨ 1 , ( 1st𝑤 ) ⟩ , ⟨ 2 , ( 2nd𝑤 ) ⟩ } → ( ( 1st𝑧 ) = ( 1st𝑤 ) ∧ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) ) )
51 1st2nd2 ( 𝑤 ∈ ( ℝ × ℝ ) → 𝑤 = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ )
52 51 fveq2d ( 𝑤 ∈ ( ℝ × ℝ ) → ( 𝐹𝑤 ) = ( 𝐹 ‘ ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ ) )
53 df-ov ( ( 1st𝑤 ) 𝐹 ( 2nd𝑤 ) ) = ( 𝐹 ‘ ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ )
54 52 53 eqtr4di ( 𝑤 ∈ ( ℝ × ℝ ) → ( 𝐹𝑤 ) = ( ( 1st𝑤 ) 𝐹 ( 2nd𝑤 ) ) )
55 xp1st ( 𝑤 ∈ ( ℝ × ℝ ) → ( 1st𝑤 ) ∈ ℝ )
56 xp2nd ( 𝑤 ∈ ( ℝ × ℝ ) → ( 2nd𝑤 ) ∈ ℝ )
57 opeq2 ( 𝑥 = ( 1st𝑤 ) → ⟨ 1 , 𝑥 ⟩ = ⟨ 1 , ( 1st𝑤 ) ⟩ )
58 57 preq1d ( 𝑥 = ( 1st𝑤 ) → { ⟨ 1 , 𝑥 ⟩ , ⟨ 2 , 𝑦 ⟩ } = { ⟨ 1 , ( 1st𝑤 ) ⟩ , ⟨ 2 , 𝑦 ⟩ } )
59 opeq2 ( 𝑦 = ( 2nd𝑤 ) → ⟨ 2 , 𝑦 ⟩ = ⟨ 2 , ( 2nd𝑤 ) ⟩ )
60 59 preq2d ( 𝑦 = ( 2nd𝑤 ) → { ⟨ 1 , ( 1st𝑤 ) ⟩ , ⟨ 2 , 𝑦 ⟩ } = { ⟨ 1 , ( 1st𝑤 ) ⟩ , ⟨ 2 , ( 2nd𝑤 ) ⟩ } )
61 prex { ⟨ 1 , ( 1st𝑤 ) ⟩ , ⟨ 2 , ( 2nd𝑤 ) ⟩ } ∈ V
62 58 60 2 61 ovmpo ( ( ( 1st𝑤 ) ∈ ℝ ∧ ( 2nd𝑤 ) ∈ ℝ ) → ( ( 1st𝑤 ) 𝐹 ( 2nd𝑤 ) ) = { ⟨ 1 , ( 1st𝑤 ) ⟩ , ⟨ 2 , ( 2nd𝑤 ) ⟩ } )
63 55 56 62 syl2anc ( 𝑤 ∈ ( ℝ × ℝ ) → ( ( 1st𝑤 ) 𝐹 ( 2nd𝑤 ) ) = { ⟨ 1 , ( 1st𝑤 ) ⟩ , ⟨ 2 , ( 2nd𝑤 ) ⟩ } )
64 54 63 eqtrd ( 𝑤 ∈ ( ℝ × ℝ ) → ( 𝐹𝑤 ) = { ⟨ 1 , ( 1st𝑤 ) ⟩ , ⟨ 2 , ( 2nd𝑤 ) ⟩ } )
65 18 64 eqeqan12d ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ↔ { ⟨ 1 , ( 1st𝑧 ) ⟩ , ⟨ 2 , ( 2nd𝑧 ) ⟩ } = { ⟨ 1 , ( 1st𝑤 ) ⟩ , ⟨ 2 , ( 2nd𝑤 ) ⟩ } ) )
66 5 51 eqeqan12d ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( 𝑧 = 𝑤 ↔ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ ) )
67 32 36 opth ( ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ ↔ ( ( 1st𝑧 ) = ( 1st𝑤 ) ∧ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) )
68 66 67 bitrdi ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( 𝑧 = 𝑤 ↔ ( ( 1st𝑧 ) = ( 1st𝑤 ) ∧ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) ) )
69 50 65 68 3imtr4d ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) )
70 69 rgen2 𝑧 ∈ ( ℝ × ℝ ) ∀ 𝑤 ∈ ( ℝ × ℝ ) ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 )
71 dff13 ( 𝐹 : ( ℝ × ℝ ) –1-1𝑅 ↔ ( 𝐹 : ( ℝ × ℝ ) ⟶ 𝑅 ∧ ∀ 𝑧 ∈ ( ℝ × ℝ ) ∀ 𝑤 ∈ ( ℝ × ℝ ) ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ) )
72 25 70 71 mpbir2an 𝐹 : ( ℝ × ℝ ) –1-1𝑅
73 1 eleq2i ( 𝑤𝑅𝑤 ∈ ( ℝ ↑m { 1 , 2 } ) )
74 reex ℝ ∈ V
75 prex { 1 , 2 } ∈ V
76 74 75 elmap ( 𝑤 ∈ ( ℝ ↑m { 1 , 2 } ) ↔ 𝑤 : { 1 , 2 } ⟶ ℝ )
77 1re 1 ∈ ℝ
78 2re 2 ∈ ℝ
79 fpr2g ( ( 1 ∈ ℝ ∧ 2 ∈ ℝ ) → ( 𝑤 : { 1 , 2 } ⟶ ℝ ↔ ( ( 𝑤 ‘ 1 ) ∈ ℝ ∧ ( 𝑤 ‘ 2 ) ∈ ℝ ∧ 𝑤 = { ⟨ 1 , ( 𝑤 ‘ 1 ) ⟩ , ⟨ 2 , ( 𝑤 ‘ 2 ) ⟩ } ) ) )
80 77 78 79 mp2an ( 𝑤 : { 1 , 2 } ⟶ ℝ ↔ ( ( 𝑤 ‘ 1 ) ∈ ℝ ∧ ( 𝑤 ‘ 2 ) ∈ ℝ ∧ 𝑤 = { ⟨ 1 , ( 𝑤 ‘ 1 ) ⟩ , ⟨ 2 , ( 𝑤 ‘ 2 ) ⟩ } ) )
81 73 76 80 3bitri ( 𝑤𝑅 ↔ ( ( 𝑤 ‘ 1 ) ∈ ℝ ∧ ( 𝑤 ‘ 2 ) ∈ ℝ ∧ 𝑤 = { ⟨ 1 , ( 𝑤 ‘ 1 ) ⟩ , ⟨ 2 , ( 𝑤 ‘ 2 ) ⟩ } ) )
82 opeq2 ( 𝑢 = ( 𝑤 ‘ 1 ) → ⟨ 1 , 𝑢 ⟩ = ⟨ 1 , ( 𝑤 ‘ 1 ) ⟩ )
83 82 preq1d ( 𝑢 = ( 𝑤 ‘ 1 ) → { ⟨ 1 , 𝑢 ⟩ , ⟨ 2 , 𝑣 ⟩ } = { ⟨ 1 , ( 𝑤 ‘ 1 ) ⟩ , ⟨ 2 , 𝑣 ⟩ } )
84 83 eqeq2d ( 𝑢 = ( 𝑤 ‘ 1 ) → ( 𝑤 = { ⟨ 1 , 𝑢 ⟩ , ⟨ 2 , 𝑣 ⟩ } ↔ 𝑤 = { ⟨ 1 , ( 𝑤 ‘ 1 ) ⟩ , ⟨ 2 , 𝑣 ⟩ } ) )
85 opeq2 ( 𝑣 = ( 𝑤 ‘ 2 ) → ⟨ 2 , 𝑣 ⟩ = ⟨ 2 , ( 𝑤 ‘ 2 ) ⟩ )
86 85 preq2d ( 𝑣 = ( 𝑤 ‘ 2 ) → { ⟨ 1 , ( 𝑤 ‘ 1 ) ⟩ , ⟨ 2 , 𝑣 ⟩ } = { ⟨ 1 , ( 𝑤 ‘ 1 ) ⟩ , ⟨ 2 , ( 𝑤 ‘ 2 ) ⟩ } )
87 86 eqeq2d ( 𝑣 = ( 𝑤 ‘ 2 ) → ( 𝑤 = { ⟨ 1 , ( 𝑤 ‘ 1 ) ⟩ , ⟨ 2 , 𝑣 ⟩ } ↔ 𝑤 = { ⟨ 1 , ( 𝑤 ‘ 1 ) ⟩ , ⟨ 2 , ( 𝑤 ‘ 2 ) ⟩ } ) )
88 84 87 rspc2ev ( ( ( 𝑤 ‘ 1 ) ∈ ℝ ∧ ( 𝑤 ‘ 2 ) ∈ ℝ ∧ 𝑤 = { ⟨ 1 , ( 𝑤 ‘ 1 ) ⟩ , ⟨ 2 , ( 𝑤 ‘ 2 ) ⟩ } ) → ∃ 𝑢 ∈ ℝ ∃ 𝑣 ∈ ℝ 𝑤 = { ⟨ 1 , 𝑢 ⟩ , ⟨ 2 , 𝑣 ⟩ } )
89 81 88 sylbi ( 𝑤𝑅 → ∃ 𝑢 ∈ ℝ ∃ 𝑣 ∈ ℝ 𝑤 = { ⟨ 1 , 𝑢 ⟩ , ⟨ 2 , 𝑣 ⟩ } )
90 opeq2 ( 𝑥 = 𝑢 → ⟨ 1 , 𝑥 ⟩ = ⟨ 1 , 𝑢 ⟩ )
91 90 preq1d ( 𝑥 = 𝑢 → { ⟨ 1 , 𝑥 ⟩ , ⟨ 2 , 𝑦 ⟩ } = { ⟨ 1 , 𝑢 ⟩ , ⟨ 2 , 𝑦 ⟩ } )
92 opeq2 ( 𝑦 = 𝑣 → ⟨ 2 , 𝑦 ⟩ = ⟨ 2 , 𝑣 ⟩ )
93 92 preq2d ( 𝑦 = 𝑣 → { ⟨ 1 , 𝑢 ⟩ , ⟨ 2 , 𝑦 ⟩ } = { ⟨ 1 , 𝑢 ⟩ , ⟨ 2 , 𝑣 ⟩ } )
94 prex { ⟨ 1 , 𝑢 ⟩ , ⟨ 2 , 𝑣 ⟩ } ∈ V
95 91 93 2 94 ovmpo ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑢 𝐹 𝑣 ) = { ⟨ 1 , 𝑢 ⟩ , ⟨ 2 , 𝑣 ⟩ } )
96 95 eqeq2d ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑤 = ( 𝑢 𝐹 𝑣 ) ↔ 𝑤 = { ⟨ 1 , 𝑢 ⟩ , ⟨ 2 , 𝑣 ⟩ } ) )
97 96 2rexbiia ( ∃ 𝑢 ∈ ℝ ∃ 𝑣 ∈ ℝ 𝑤 = ( 𝑢 𝐹 𝑣 ) ↔ ∃ 𝑢 ∈ ℝ ∃ 𝑣 ∈ ℝ 𝑤 = { ⟨ 1 , 𝑢 ⟩ , ⟨ 2 , 𝑣 ⟩ } )
98 89 97 sylibr ( 𝑤𝑅 → ∃ 𝑢 ∈ ℝ ∃ 𝑣 ∈ ℝ 𝑤 = ( 𝑢 𝐹 𝑣 ) )
99 fveq2 ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ( 𝐹𝑧 ) = ( 𝐹 ‘ ⟨ 𝑢 , 𝑣 ⟩ ) )
100 df-ov ( 𝑢 𝐹 𝑣 ) = ( 𝐹 ‘ ⟨ 𝑢 , 𝑣 ⟩ )
101 99 100 eqtr4di ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ( 𝐹𝑧 ) = ( 𝑢 𝐹 𝑣 ) )
102 101 eqeq2d ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ( 𝑤 = ( 𝐹𝑧 ) ↔ 𝑤 = ( 𝑢 𝐹 𝑣 ) ) )
103 102 rexxp ( ∃ 𝑧 ∈ ( ℝ × ℝ ) 𝑤 = ( 𝐹𝑧 ) ↔ ∃ 𝑢 ∈ ℝ ∃ 𝑣 ∈ ℝ 𝑤 = ( 𝑢 𝐹 𝑣 ) )
104 98 103 sylibr ( 𝑤𝑅 → ∃ 𝑧 ∈ ( ℝ × ℝ ) 𝑤 = ( 𝐹𝑧 ) )
105 104 rgen 𝑤𝑅𝑧 ∈ ( ℝ × ℝ ) 𝑤 = ( 𝐹𝑧 )
106 dffo3 ( 𝐹 : ( ℝ × ℝ ) –onto𝑅 ↔ ( 𝐹 : ( ℝ × ℝ ) ⟶ 𝑅 ∧ ∀ 𝑤𝑅𝑧 ∈ ( ℝ × ℝ ) 𝑤 = ( 𝐹𝑧 ) ) )
107 25 105 106 mpbir2an 𝐹 : ( ℝ × ℝ ) –onto𝑅
108 df-f1o ( 𝐹 : ( ℝ × ℝ ) –1-1-onto𝑅 ↔ ( 𝐹 : ( ℝ × ℝ ) –1-1𝑅𝐹 : ( ℝ × ℝ ) –onto𝑅 ) )
109 72 107 108 mpbir2an 𝐹 : ( ℝ × ℝ ) –1-1-onto𝑅