| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rrx2xpreen.r | 
							⊢ 𝑅  =  ( ℝ  ↑m  { 1 ,  2 } )  | 
						
						
							| 2 | 
							
								
							 | 
							rrx2xpref1o.1 | 
							⊢ 𝐹  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 〈 1 ,  𝑥 〉 ,  〈 2 ,  𝑦 〉 } )  | 
						
						
							| 3 | 
							
								
							 | 
							prex | 
							⊢ { 〈 1 ,  𝑥 〉 ,  〈 2 ,  𝑦 〉 }  ∈  V  | 
						
						
							| 4 | 
							
								2 3
							 | 
							fnmpoi | 
							⊢ 𝐹  Fn  ( ℝ  ×  ℝ )  | 
						
						
							| 5 | 
							
								
							 | 
							1st2nd2 | 
							⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  𝑧  =  〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉 )  | 
						
						
							| 6 | 
							
								5
							 | 
							fveq2d | 
							⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							df-ov | 
							⊢ ( ( 1st  ‘ 𝑧 ) 𝐹 ( 2nd  ‘ 𝑧 ) )  =  ( 𝐹 ‘ 〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉 )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							eqtr4di | 
							⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  ( 𝐹 ‘ 𝑧 )  =  ( ( 1st  ‘ 𝑧 ) 𝐹 ( 2nd  ‘ 𝑧 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							xp1st | 
							⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  ( 1st  ‘ 𝑧 )  ∈  ℝ )  | 
						
						
							| 10 | 
							
								
							 | 
							xp2nd | 
							⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  ( 2nd  ‘ 𝑧 )  ∈  ℝ )  | 
						
						
							| 11 | 
							
								
							 | 
							opeq2 | 
							⊢ ( 𝑥  =  ( 1st  ‘ 𝑧 )  →  〈 1 ,  𝑥 〉  =  〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 )  | 
						
						
							| 12 | 
							
								11
							 | 
							preq1d | 
							⊢ ( 𝑥  =  ( 1st  ‘ 𝑧 )  →  { 〈 1 ,  𝑥 〉 ,  〈 2 ,  𝑦 〉 }  =  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  𝑦 〉 } )  | 
						
						
							| 13 | 
							
								
							 | 
							opeq2 | 
							⊢ ( 𝑦  =  ( 2nd  ‘ 𝑧 )  →  〈 2 ,  𝑦 〉  =  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 )  | 
						
						
							| 14 | 
							
								13
							 | 
							preq2d | 
							⊢ ( 𝑦  =  ( 2nd  ‘ 𝑧 )  →  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  𝑦 〉 }  =  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 } )  | 
						
						
							| 15 | 
							
								
							 | 
							prex | 
							⊢ { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 }  ∈  V  | 
						
						
							| 16 | 
							
								12 14 2 15
							 | 
							ovmpo | 
							⊢ ( ( ( 1st  ‘ 𝑧 )  ∈  ℝ  ∧  ( 2nd  ‘ 𝑧 )  ∈  ℝ )  →  ( ( 1st  ‘ 𝑧 ) 𝐹 ( 2nd  ‘ 𝑧 ) )  =  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 } )  | 
						
						
							| 17 | 
							
								9 10 16
							 | 
							syl2anc | 
							⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  ( ( 1st  ‘ 𝑧 ) 𝐹 ( 2nd  ‘ 𝑧 ) )  =  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 } )  | 
						
						
							| 18 | 
							
								8 17
							 | 
							eqtrd | 
							⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  ( 𝐹 ‘ 𝑧 )  =  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 } )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ { 1 ,  2 }  =  { 1 ,  2 }  | 
						
						
							| 20 | 
							
								19 1
							 | 
							prelrrx2 | 
							⊢ ( ( ( 1st  ‘ 𝑧 )  ∈  ℝ  ∧  ( 2nd  ‘ 𝑧 )  ∈  ℝ )  →  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 }  ∈  𝑅 )  | 
						
						
							| 21 | 
							
								9 10 20
							 | 
							syl2anc | 
							⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 }  ∈  𝑅 )  | 
						
						
							| 22 | 
							
								18 21
							 | 
							eqeltrd | 
							⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑅 )  | 
						
						
							| 23 | 
							
								22
							 | 
							rgen | 
							⊢ ∀ 𝑧  ∈  ( ℝ  ×  ℝ ) ( 𝐹 ‘ 𝑧 )  ∈  𝑅  | 
						
						
							| 24 | 
							
								
							 | 
							ffnfv | 
							⊢ ( 𝐹 : ( ℝ  ×  ℝ ) ⟶ 𝑅  ↔  ( 𝐹  Fn  ( ℝ  ×  ℝ )  ∧  ∀ 𝑧  ∈  ( ℝ  ×  ℝ ) ( 𝐹 ‘ 𝑧 )  ∈  𝑅 ) )  | 
						
						
							| 25 | 
							
								4 23 24
							 | 
							mpbir2an | 
							⊢ 𝐹 : ( ℝ  ×  ℝ ) ⟶ 𝑅  | 
						
						
							| 26 | 
							
								
							 | 
							opex | 
							⊢ 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  ∈  V  | 
						
						
							| 27 | 
							
								
							 | 
							opex | 
							⊢ 〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  ∈  V  | 
						
						
							| 28 | 
							
								
							 | 
							opex | 
							⊢ 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉  ∈  V  | 
						
						
							| 29 | 
							
								
							 | 
							opex | 
							⊢ 〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  V  | 
						
						
							| 30 | 
							
								26 27 28 29
							 | 
							preq12b | 
							⊢ ( { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 }  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 }  ↔  ( ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉  ∧  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 )  ∨  ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉  ∧  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							1ex | 
							⊢ 1  ∈  V  | 
						
						
							| 32 | 
							
								
							 | 
							fvex | 
							⊢ ( 1st  ‘ 𝑧 )  ∈  V  | 
						
						
							| 33 | 
							
								31 32
							 | 
							opth | 
							⊢ ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉  ↔  ( 1  =  1  ∧  ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							simprbi | 
							⊢ ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉  →  ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							2ex | 
							⊢ 2  ∈  V  | 
						
						
							| 36 | 
							
								
							 | 
							fvex | 
							⊢ ( 2nd  ‘ 𝑧 )  ∈  V  | 
						
						
							| 37 | 
							
								35 36
							 | 
							opth | 
							⊢ ( 〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉  ↔  ( 2  =  2  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							simprbi | 
							⊢ ( 〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉  →  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) )  | 
						
						
							| 39 | 
							
								34 38
							 | 
							anim12i | 
							⊢ ( ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉  ∧  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 )  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							a1d | 
							⊢ ( ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉  ∧  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 )  →  ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) )  | 
						
						
							| 41 | 
							
								31 32
							 | 
							opth | 
							⊢ ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉  ↔  ( 1  =  2  ∧  ( 1st  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) )  | 
						
						
							| 42 | 
							
								35 36
							 | 
							opth | 
							⊢ ( 〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉  ↔  ( 2  =  1  ∧  ( 2nd  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							1ne2 | 
							⊢ 1  ≠  2  | 
						
						
							| 44 | 
							
								
							 | 
							eqneqall | 
							⊢ ( 1  =  2  →  ( 1  ≠  2  →  ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							mpi | 
							⊢ ( 1  =  2  →  ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							ad2antrr | 
							⊢ ( ( ( 1  =  2  ∧  ( 1st  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) )  ∧  ( 2  =  1  ∧  ( 2nd  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 ) ) )  →  ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) )  | 
						
						
							| 47 | 
							
								41 42 46
							 | 
							syl2anb | 
							⊢ ( ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉  ∧  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 )  →  ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) )  | 
						
						
							| 48 | 
							
								40 47
							 | 
							jaoi | 
							⊢ ( ( ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉  ∧  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 )  ∨  ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉  ∧  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ) )  →  ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) )  | 
						
						
							| 49 | 
							
								30 48
							 | 
							sylbi | 
							⊢ ( { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 }  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 }  →  ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							com12 | 
							⊢ ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 }  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 }  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) )  | 
						
						
							| 51 | 
							
								
							 | 
							1st2nd2 | 
							⊢ ( 𝑤  ∈  ( ℝ  ×  ℝ )  →  𝑤  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉 )  | 
						
						
							| 52 | 
							
								51
							 | 
							fveq2d | 
							⊢ ( 𝑤  ∈  ( ℝ  ×  ℝ )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉 ) )  | 
						
						
							| 53 | 
							
								
							 | 
							df-ov | 
							⊢ ( ( 1st  ‘ 𝑤 ) 𝐹 ( 2nd  ‘ 𝑤 ) )  =  ( 𝐹 ‘ 〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉 )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							eqtr4di | 
							⊢ ( 𝑤  ∈  ( ℝ  ×  ℝ )  →  ( 𝐹 ‘ 𝑤 )  =  ( ( 1st  ‘ 𝑤 ) 𝐹 ( 2nd  ‘ 𝑤 ) ) )  | 
						
						
							| 55 | 
							
								
							 | 
							xp1st | 
							⊢ ( 𝑤  ∈  ( ℝ  ×  ℝ )  →  ( 1st  ‘ 𝑤 )  ∈  ℝ )  | 
						
						
							| 56 | 
							
								
							 | 
							xp2nd | 
							⊢ ( 𝑤  ∈  ( ℝ  ×  ℝ )  →  ( 2nd  ‘ 𝑤 )  ∈  ℝ )  | 
						
						
							| 57 | 
							
								
							 | 
							opeq2 | 
							⊢ ( 𝑥  =  ( 1st  ‘ 𝑤 )  →  〈 1 ,  𝑥 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 )  | 
						
						
							| 58 | 
							
								57
							 | 
							preq1d | 
							⊢ ( 𝑥  =  ( 1st  ‘ 𝑤 )  →  { 〈 1 ,  𝑥 〉 ,  〈 2 ,  𝑦 〉 }  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  𝑦 〉 } )  | 
						
						
							| 59 | 
							
								
							 | 
							opeq2 | 
							⊢ ( 𝑦  =  ( 2nd  ‘ 𝑤 )  →  〈 2 ,  𝑦 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 )  | 
						
						
							| 60 | 
							
								59
							 | 
							preq2d | 
							⊢ ( 𝑦  =  ( 2nd  ‘ 𝑤 )  →  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  𝑦 〉 }  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 } )  | 
						
						
							| 61 | 
							
								
							 | 
							prex | 
							⊢ { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 }  ∈  V  | 
						
						
							| 62 | 
							
								58 60 2 61
							 | 
							ovmpo | 
							⊢ ( ( ( 1st  ‘ 𝑤 )  ∈  ℝ  ∧  ( 2nd  ‘ 𝑤 )  ∈  ℝ )  →  ( ( 1st  ‘ 𝑤 ) 𝐹 ( 2nd  ‘ 𝑤 ) )  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 } )  | 
						
						
							| 63 | 
							
								55 56 62
							 | 
							syl2anc | 
							⊢ ( 𝑤  ∈  ( ℝ  ×  ℝ )  →  ( ( 1st  ‘ 𝑤 ) 𝐹 ( 2nd  ‘ 𝑤 ) )  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 } )  | 
						
						
							| 64 | 
							
								54 63
							 | 
							eqtrd | 
							⊢ ( 𝑤  ∈  ( ℝ  ×  ℝ )  →  ( 𝐹 ‘ 𝑤 )  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 } )  | 
						
						
							| 65 | 
							
								18 64
							 | 
							eqeqan12d | 
							⊢ ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑤 )  ↔  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 }  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 } ) )  | 
						
						
							| 66 | 
							
								5 51
							 | 
							eqeqan12d | 
							⊢ ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( 𝑧  =  𝑤  ↔  〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉 ) )  | 
						
						
							| 67 | 
							
								32 36
							 | 
							opth | 
							⊢ ( 〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ↔  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) )  | 
						
						
							| 68 | 
							
								66 67
							 | 
							bitrdi | 
							⊢ ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( 𝑧  =  𝑤  ↔  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) )  | 
						
						
							| 69 | 
							
								50 65 68
							 | 
							3imtr4d | 
							⊢ ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑤 )  →  𝑧  =  𝑤 ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							rgen2 | 
							⊢ ∀ 𝑧  ∈  ( ℝ  ×  ℝ ) ∀ 𝑤  ∈  ( ℝ  ×  ℝ ) ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑤 )  →  𝑧  =  𝑤 )  | 
						
						
							| 71 | 
							
								
							 | 
							dff13 | 
							⊢ ( 𝐹 : ( ℝ  ×  ℝ ) –1-1→ 𝑅  ↔  ( 𝐹 : ( ℝ  ×  ℝ ) ⟶ 𝑅  ∧  ∀ 𝑧  ∈  ( ℝ  ×  ℝ ) ∀ 𝑤  ∈  ( ℝ  ×  ℝ ) ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑤 )  →  𝑧  =  𝑤 ) ) )  | 
						
						
							| 72 | 
							
								25 70 71
							 | 
							mpbir2an | 
							⊢ 𝐹 : ( ℝ  ×  ℝ ) –1-1→ 𝑅  | 
						
						
							| 73 | 
							
								1
							 | 
							eleq2i | 
							⊢ ( 𝑤  ∈  𝑅  ↔  𝑤  ∈  ( ℝ  ↑m  { 1 ,  2 } ) )  | 
						
						
							| 74 | 
							
								
							 | 
							reex | 
							⊢ ℝ  ∈  V  | 
						
						
							| 75 | 
							
								
							 | 
							prex | 
							⊢ { 1 ,  2 }  ∈  V  | 
						
						
							| 76 | 
							
								74 75
							 | 
							elmap | 
							⊢ ( 𝑤  ∈  ( ℝ  ↑m  { 1 ,  2 } )  ↔  𝑤 : { 1 ,  2 } ⟶ ℝ )  | 
						
						
							| 77 | 
							
								
							 | 
							1re | 
							⊢ 1  ∈  ℝ  | 
						
						
							| 78 | 
							
								
							 | 
							2re | 
							⊢ 2  ∈  ℝ  | 
						
						
							| 79 | 
							
								
							 | 
							fpr2g | 
							⊢ ( ( 1  ∈  ℝ  ∧  2  ∈  ℝ )  →  ( 𝑤 : { 1 ,  2 } ⟶ ℝ  ↔  ( ( 𝑤 ‘ 1 )  ∈  ℝ  ∧  ( 𝑤 ‘ 2 )  ∈  ℝ  ∧  𝑤  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  ( 𝑤 ‘ 2 ) 〉 } ) ) )  | 
						
						
							| 80 | 
							
								77 78 79
							 | 
							mp2an | 
							⊢ ( 𝑤 : { 1 ,  2 } ⟶ ℝ  ↔  ( ( 𝑤 ‘ 1 )  ∈  ℝ  ∧  ( 𝑤 ‘ 2 )  ∈  ℝ  ∧  𝑤  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  ( 𝑤 ‘ 2 ) 〉 } ) )  | 
						
						
							| 81 | 
							
								73 76 80
							 | 
							3bitri | 
							⊢ ( 𝑤  ∈  𝑅  ↔  ( ( 𝑤 ‘ 1 )  ∈  ℝ  ∧  ( 𝑤 ‘ 2 )  ∈  ℝ  ∧  𝑤  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  ( 𝑤 ‘ 2 ) 〉 } ) )  | 
						
						
							| 82 | 
							
								
							 | 
							opeq2 | 
							⊢ ( 𝑢  =  ( 𝑤 ‘ 1 )  →  〈 1 ,  𝑢 〉  =  〈 1 ,  ( 𝑤 ‘ 1 ) 〉 )  | 
						
						
							| 83 | 
							
								82
							 | 
							preq1d | 
							⊢ ( 𝑢  =  ( 𝑤 ‘ 1 )  →  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 }  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  𝑣 〉 } )  | 
						
						
							| 84 | 
							
								83
							 | 
							eqeq2d | 
							⊢ ( 𝑢  =  ( 𝑤 ‘ 1 )  →  ( 𝑤  =  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 }  ↔  𝑤  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  𝑣 〉 } ) )  | 
						
						
							| 85 | 
							
								
							 | 
							opeq2 | 
							⊢ ( 𝑣  =  ( 𝑤 ‘ 2 )  →  〈 2 ,  𝑣 〉  =  〈 2 ,  ( 𝑤 ‘ 2 ) 〉 )  | 
						
						
							| 86 | 
							
								85
							 | 
							preq2d | 
							⊢ ( 𝑣  =  ( 𝑤 ‘ 2 )  →  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  𝑣 〉 }  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  ( 𝑤 ‘ 2 ) 〉 } )  | 
						
						
							| 87 | 
							
								86
							 | 
							eqeq2d | 
							⊢ ( 𝑣  =  ( 𝑤 ‘ 2 )  →  ( 𝑤  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  𝑣 〉 }  ↔  𝑤  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  ( 𝑤 ‘ 2 ) 〉 } ) )  | 
						
						
							| 88 | 
							
								84 87
							 | 
							rspc2ev | 
							⊢ ( ( ( 𝑤 ‘ 1 )  ∈  ℝ  ∧  ( 𝑤 ‘ 2 )  ∈  ℝ  ∧  𝑤  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  ( 𝑤 ‘ 2 ) 〉 } )  →  ∃ 𝑢  ∈  ℝ ∃ 𝑣  ∈  ℝ 𝑤  =  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 } )  | 
						
						
							| 89 | 
							
								81 88
							 | 
							sylbi | 
							⊢ ( 𝑤  ∈  𝑅  →  ∃ 𝑢  ∈  ℝ ∃ 𝑣  ∈  ℝ 𝑤  =  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 } )  | 
						
						
							| 90 | 
							
								
							 | 
							opeq2 | 
							⊢ ( 𝑥  =  𝑢  →  〈 1 ,  𝑥 〉  =  〈 1 ,  𝑢 〉 )  | 
						
						
							| 91 | 
							
								90
							 | 
							preq1d | 
							⊢ ( 𝑥  =  𝑢  →  { 〈 1 ,  𝑥 〉 ,  〈 2 ,  𝑦 〉 }  =  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑦 〉 } )  | 
						
						
							| 92 | 
							
								
							 | 
							opeq2 | 
							⊢ ( 𝑦  =  𝑣  →  〈 2 ,  𝑦 〉  =  〈 2 ,  𝑣 〉 )  | 
						
						
							| 93 | 
							
								92
							 | 
							preq2d | 
							⊢ ( 𝑦  =  𝑣  →  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑦 〉 }  =  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 } )  | 
						
						
							| 94 | 
							
								
							 | 
							prex | 
							⊢ { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 }  ∈  V  | 
						
						
							| 95 | 
							
								91 93 2 94
							 | 
							ovmpo | 
							⊢ ( ( 𝑢  ∈  ℝ  ∧  𝑣  ∈  ℝ )  →  ( 𝑢 𝐹 𝑣 )  =  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 } )  | 
						
						
							| 96 | 
							
								95
							 | 
							eqeq2d | 
							⊢ ( ( 𝑢  ∈  ℝ  ∧  𝑣  ∈  ℝ )  →  ( 𝑤  =  ( 𝑢 𝐹 𝑣 )  ↔  𝑤  =  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 } ) )  | 
						
						
							| 97 | 
							
								96
							 | 
							2rexbiia | 
							⊢ ( ∃ 𝑢  ∈  ℝ ∃ 𝑣  ∈  ℝ 𝑤  =  ( 𝑢 𝐹 𝑣 )  ↔  ∃ 𝑢  ∈  ℝ ∃ 𝑣  ∈  ℝ 𝑤  =  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 } )  | 
						
						
							| 98 | 
							
								89 97
							 | 
							sylibr | 
							⊢ ( 𝑤  ∈  𝑅  →  ∃ 𝑢  ∈  ℝ ∃ 𝑣  ∈  ℝ 𝑤  =  ( 𝑢 𝐹 𝑣 ) )  | 
						
						
							| 99 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑧  =  〈 𝑢 ,  𝑣 〉  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 〈 𝑢 ,  𝑣 〉 ) )  | 
						
						
							| 100 | 
							
								
							 | 
							df-ov | 
							⊢ ( 𝑢 𝐹 𝑣 )  =  ( 𝐹 ‘ 〈 𝑢 ,  𝑣 〉 )  | 
						
						
							| 101 | 
							
								99 100
							 | 
							eqtr4di | 
							⊢ ( 𝑧  =  〈 𝑢 ,  𝑣 〉  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑢 𝐹 𝑣 ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							eqeq2d | 
							⊢ ( 𝑧  =  〈 𝑢 ,  𝑣 〉  →  ( 𝑤  =  ( 𝐹 ‘ 𝑧 )  ↔  𝑤  =  ( 𝑢 𝐹 𝑣 ) ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							rexxp | 
							⊢ ( ∃ 𝑧  ∈  ( ℝ  ×  ℝ ) 𝑤  =  ( 𝐹 ‘ 𝑧 )  ↔  ∃ 𝑢  ∈  ℝ ∃ 𝑣  ∈  ℝ 𝑤  =  ( 𝑢 𝐹 𝑣 ) )  | 
						
						
							| 104 | 
							
								98 103
							 | 
							sylibr | 
							⊢ ( 𝑤  ∈  𝑅  →  ∃ 𝑧  ∈  ( ℝ  ×  ℝ ) 𝑤  =  ( 𝐹 ‘ 𝑧 ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							rgen | 
							⊢ ∀ 𝑤  ∈  𝑅 ∃ 𝑧  ∈  ( ℝ  ×  ℝ ) 𝑤  =  ( 𝐹 ‘ 𝑧 )  | 
						
						
							| 106 | 
							
								
							 | 
							dffo3 | 
							⊢ ( 𝐹 : ( ℝ  ×  ℝ ) –onto→ 𝑅  ↔  ( 𝐹 : ( ℝ  ×  ℝ ) ⟶ 𝑅  ∧  ∀ 𝑤  ∈  𝑅 ∃ 𝑧  ∈  ( ℝ  ×  ℝ ) 𝑤  =  ( 𝐹 ‘ 𝑧 ) ) )  | 
						
						
							| 107 | 
							
								25 105 106
							 | 
							mpbir2an | 
							⊢ 𝐹 : ( ℝ  ×  ℝ ) –onto→ 𝑅  | 
						
						
							| 108 | 
							
								
							 | 
							df-f1o | 
							⊢ ( 𝐹 : ( ℝ  ×  ℝ ) –1-1-onto→ 𝑅  ↔  ( 𝐹 : ( ℝ  ×  ℝ ) –1-1→ 𝑅  ∧  𝐹 : ( ℝ  ×  ℝ ) –onto→ 𝑅 ) )  | 
						
						
							| 109 | 
							
								72 107 108
							 | 
							mpbir2an | 
							⊢ 𝐹 : ( ℝ  ×  ℝ ) –1-1-onto→ 𝑅  |