Step |
Hyp |
Ref |
Expression |
1 |
|
rrxval.r |
⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) |
2 |
|
rrxbase.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
3 |
1
|
rrxval |
⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝐻 ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
5 |
|
eqid |
⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) |
7 |
5 6
|
tcphbas |
⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
8 |
4 7
|
eqtr4di |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝐻 ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
9 |
2
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = ( Base ‘ 𝐻 ) ) |
10 |
|
refld |
⊢ ℝfld ∈ Field |
11 |
|
eqid |
⊢ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 ) |
12 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
13 |
|
re0g |
⊢ 0 = ( 0g ‘ ℝfld ) |
14 |
|
eqid |
⊢ { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } = { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } |
15 |
11 12 13 14
|
frlmbas |
⊢ ( ( ℝfld ∈ Field ∧ 𝐼 ∈ 𝑉 ) → { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
16 |
10 15
|
mpan |
⊢ ( 𝐼 ∈ 𝑉 → { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
17 |
8 9 16
|
3eqtr4d |
⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } ) |