Metamath Proof Explorer


Theorem rrxbase

Description: The base of the generalized real Euclidean space is the set of functions with finite support. (Contributed by Thierry Arnoux, 16-Jun-2019) (Proof shortened by AV, 22-Jul-2019)

Ref Expression
Hypotheses rrxval.r 𝐻 = ( ℝ^ ‘ 𝐼 )
rrxbase.b 𝐵 = ( Base ‘ 𝐻 )
Assertion rrxbase ( 𝐼𝑉𝐵 = { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } )

Proof

Step Hyp Ref Expression
1 rrxval.r 𝐻 = ( ℝ^ ‘ 𝐼 )
2 rrxbase.b 𝐵 = ( Base ‘ 𝐻 )
3 1 rrxval ( 𝐼𝑉𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) )
4 3 fveq2d ( 𝐼𝑉 → ( Base ‘ 𝐻 ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) )
5 eqid ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) )
6 eqid ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) )
7 5 6 tcphbas ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) )
8 4 7 eqtr4di ( 𝐼𝑉 → ( Base ‘ 𝐻 ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) )
9 2 a1i ( 𝐼𝑉𝐵 = ( Base ‘ 𝐻 ) )
10 refld fld ∈ Field
11 eqid ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 )
12 rebase ℝ = ( Base ‘ ℝfld )
13 re0g 0 = ( 0g ‘ ℝfld )
14 eqid { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } = { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 }
15 11 12 13 14 frlmbas ( ( ℝfld ∈ Field ∧ 𝐼𝑉 ) → { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) )
16 10 15 mpan ( 𝐼𝑉 → { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) )
17 8 9 16 3eqtr4d ( 𝐼𝑉𝐵 = { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } )