Step |
Hyp |
Ref |
Expression |
1 |
|
rrxbasefi.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
rrxbasefi.h |
⊢ 𝐻 = ( ℝ^ ‘ 𝑋 ) |
3 |
|
rrxbasefi.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
4 |
2 3
|
rrxbase |
⊢ ( 𝑋 ∈ Fin → 𝐵 = { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝐵 = { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } ) |
6 |
|
ssrab2 |
⊢ { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } ⊆ ( ℝ ↑m 𝑋 ) |
7 |
5 6
|
eqsstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ ( ℝ ↑m 𝑋 ) ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) |
9 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) → 𝑓 : 𝑋 ⟶ ℝ ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 : 𝑋 ⟶ ℝ ) |
11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑋 ∈ Fin ) |
12 |
|
c0ex |
⊢ 0 ∈ V |
13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 0 ∈ V ) |
14 |
10 11 13
|
fdmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 finSupp 0 ) |
15 |
|
rabid |
⊢ ( 𝑓 ∈ { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } ↔ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑓 finSupp 0 ) ) |
16 |
8 14 15
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 ∈ { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } ) |
17 |
5
|
eqcomd |
⊢ ( 𝜑 → { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } = 𝐵 ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } = 𝐵 ) |
19 |
16 18
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 ∈ 𝐵 ) |
20 |
7 19
|
eqelssd |
⊢ ( 𝜑 → 𝐵 = ( ℝ ↑m 𝑋 ) ) |