Metamath Proof Explorer


Theorem rrxbasefi

Description: The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of ( RR ^m X ) for the development of the Lebesgue measure theory for n-dimensional real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses rrxbasefi.x ( 𝜑𝑋 ∈ Fin )
rrxbasefi.h 𝐻 = ( ℝ^ ‘ 𝑋 )
rrxbasefi.b 𝐵 = ( Base ‘ 𝐻 )
Assertion rrxbasefi ( 𝜑𝐵 = ( ℝ ↑m 𝑋 ) )

Proof

Step Hyp Ref Expression
1 rrxbasefi.x ( 𝜑𝑋 ∈ Fin )
2 rrxbasefi.h 𝐻 = ( ℝ^ ‘ 𝑋 )
3 rrxbasefi.b 𝐵 = ( Base ‘ 𝐻 )
4 2 3 rrxbase ( 𝑋 ∈ Fin → 𝐵 = { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } )
5 1 4 syl ( 𝜑𝐵 = { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } )
6 ssrab2 { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } ⊆ ( ℝ ↑m 𝑋 )
7 5 6 eqsstrdi ( 𝜑𝐵 ⊆ ( ℝ ↑m 𝑋 ) )
8 simpr ( ( 𝜑𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 ∈ ( ℝ ↑m 𝑋 ) )
9 elmapi ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) → 𝑓 : 𝑋 ⟶ ℝ )
10 9 adantl ( ( 𝜑𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 : 𝑋 ⟶ ℝ )
11 1 adantr ( ( 𝜑𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑋 ∈ Fin )
12 c0ex 0 ∈ V
13 12 a1i ( ( 𝜑𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 0 ∈ V )
14 10 11 13 fdmfifsupp ( ( 𝜑𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 finSupp 0 )
15 rabid ( 𝑓 ∈ { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } ↔ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑓 finSupp 0 ) )
16 8 14 15 sylanbrc ( ( 𝜑𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 ∈ { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } )
17 5 eqcomd ( 𝜑 → { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } = 𝐵 )
18 17 adantr ( ( 𝜑𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } = 𝐵 )
19 16 18 eleqtrd ( ( 𝜑𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓𝐵 )
20 7 19 eqelssd ( 𝜑𝐵 = ( ℝ ↑m 𝑋 ) )