Step |
Hyp |
Ref |
Expression |
1 |
|
rrxval.r |
⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) |
2 |
|
rrxbase.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
3 |
1
|
rrxval |
⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
4 |
|
eqid |
⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) |
5 |
|
eqid |
⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) |
6 |
|
eqid |
⊢ ( Scalar ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Scalar ‘ ( ℝfld freeLMod 𝐼 ) ) |
7 |
|
eqid |
⊢ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 ) |
8 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
9 |
|
remulr |
⊢ · = ( .r ‘ ℝfld ) |
10 |
|
eqid |
⊢ ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) |
11 |
|
eqid |
⊢ ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) |
12 |
|
re0g |
⊢ 0 = ( 0g ‘ ℝfld ) |
13 |
|
refldcj |
⊢ ∗ = ( *𝑟 ‘ ℝfld ) |
14 |
|
refld |
⊢ ℝfld ∈ Field |
15 |
14
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → ℝfld ∈ Field ) |
16 |
|
fconstmpt |
⊢ ( 𝐼 × { 0 } ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) |
17 |
7 8 5
|
frlmbasf |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 𝑓 : 𝐼 ⟶ ℝ ) |
18 |
17
|
ffnd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 𝑓 Fn 𝐼 ) |
19 |
18
|
3adant3 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → 𝑓 Fn 𝐼 ) |
20 |
|
simpl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 𝐼 ∈ 𝑉 ) |
21 |
14
|
a1i |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ℝfld ∈ Field ) |
22 |
|
simpr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
23 |
7 8 9 5 10
|
frlmipval |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ ℝfld ∈ Field ) ∧ ( 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) → ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = ( ℝfld Σg ( 𝑓 ∘f · 𝑓 ) ) ) |
24 |
20 21 22 22 23
|
syl22anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = ( ℝfld Σg ( 𝑓 ∘f · 𝑓 ) ) ) |
25 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
26 |
|
eqidd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
27 |
18 18 20 20 25 26 26
|
offval |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑓 ∘f · 𝑓 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) ) |
28 |
17
|
ffvelrnda |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
29 |
28 28
|
remulcld |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) |
30 |
27 29
|
fmpt3d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑓 ∘f · 𝑓 ) : 𝐼 ⟶ ℝ ) |
31 |
|
ovexd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑓 ∘f · 𝑓 ) ∈ V ) |
32 |
30
|
ffund |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → Fun ( 𝑓 ∘f · 𝑓 ) ) |
33 |
7 12 5
|
frlmbasfsupp |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 𝑓 finSupp 0 ) |
34 |
|
0red |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 0 ∈ ℝ ) |
35 |
|
simpr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
36 |
35
|
recnd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
37 |
36
|
mul02d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( 0 · 𝑥 ) = 0 ) |
38 |
20 34 17 17 37
|
suppofss1d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ⊆ ( 𝑓 supp 0 ) ) |
39 |
|
fsuppsssupp |
⊢ ( ( ( ( 𝑓 ∘f · 𝑓 ) ∈ V ∧ Fun ( 𝑓 ∘f · 𝑓 ) ) ∧ ( 𝑓 finSupp 0 ∧ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ⊆ ( 𝑓 supp 0 ) ) ) → ( 𝑓 ∘f · 𝑓 ) finSupp 0 ) |
40 |
31 32 33 38 39
|
syl22anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑓 ∘f · 𝑓 ) finSupp 0 ) |
41 |
|
regsumsupp |
⊢ ( ( ( 𝑓 ∘f · 𝑓 ) : 𝐼 ⟶ ℝ ∧ ( 𝑓 ∘f · 𝑓 ) finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( ℝfld Σg ( 𝑓 ∘f · 𝑓 ) ) = Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) ) |
42 |
30 40 20 41
|
syl3anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( ℝfld Σg ( 𝑓 ∘f · 𝑓 ) ) = Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) ) |
43 |
|
suppssdm |
⊢ ( 𝑓 supp 0 ) ⊆ dom 𝑓 |
44 |
43 17
|
fssdm |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑓 supp 0 ) ⊆ 𝐼 ) |
45 |
38 44
|
sstrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ⊆ 𝐼 ) |
46 |
45
|
sselda |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → 𝑥 ∈ 𝐼 ) |
47 |
18 18 20 20 25 26 26
|
ofval |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
48 |
46 47
|
syldan |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
49 |
48
|
sumeq2dv |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
50 |
42 49
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( ℝfld Σg ( 𝑓 ∘f · 𝑓 ) ) = Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
51 |
24 50
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
52 |
51
|
3adant3 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
53 |
|
simp3 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) |
54 |
52 53
|
eqtr3d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ) |
55 |
33
|
fsuppimpd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑓 supp 0 ) ∈ Fin ) |
56 |
55 38
|
ssfid |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∈ Fin ) |
57 |
46 29
|
syldan |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) |
58 |
28
|
msqge0d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 0 ≤ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
59 |
46 58
|
syldan |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → 0 ≤ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
60 |
56 57 59
|
fsum00 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ↔ ∀ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ) ) |
61 |
60
|
3adant3 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → ( Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ↔ ∀ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ) ) |
62 |
54 61
|
mpbid |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → ∀ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ) |
63 |
62
|
r19.21bi |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ) |
64 |
63
|
adantlr |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ) |
65 |
28
|
3adantl3 |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
66 |
65
|
recnd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℂ ) |
67 |
66 66
|
mul0ord |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ↔ ( ( 𝑓 ‘ 𝑥 ) = 0 ∨ ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
68 |
67
|
adantr |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → ( ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ↔ ( ( 𝑓 ‘ 𝑥 ) = 0 ∨ ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
69 |
64 68
|
mpbid |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → ( ( 𝑓 ‘ 𝑥 ) = 0 ∨ ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
70 |
|
oridm |
⊢ ( ( ( 𝑓 ‘ 𝑥 ) = 0 ∨ ( 𝑓 ‘ 𝑥 ) = 0 ) ↔ ( 𝑓 ‘ 𝑥 ) = 0 ) |
71 |
69 70
|
sylib |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) → ( 𝑓 ‘ 𝑥 ) = 0 ) |
72 |
30
|
3adant3 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → ( 𝑓 ∘f · 𝑓 ) : 𝐼 ⟶ ℝ ) |
73 |
72
|
adantr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ∘f · 𝑓 ) : 𝐼 ⟶ ℝ ) |
74 |
|
ssidd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ⊆ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) |
75 |
|
simpl1 |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑉 ) |
76 |
|
0red |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → 0 ∈ ℝ ) |
77 |
73 74 75 76
|
suppssr |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) → ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = 0 ) |
78 |
47
|
3adantl3 |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
79 |
78
|
eqeq1d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = 0 ↔ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) = 0 ) ) |
80 |
79 67
|
bitrd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = 0 ↔ ( ( 𝑓 ‘ 𝑥 ) = 0 ∨ ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
81 |
80 70
|
bitrdi |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = 0 ↔ ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
82 |
81
|
biimpa |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ ( ( 𝑓 ∘f · 𝑓 ) ‘ 𝑥 ) = 0 ) → ( 𝑓 ‘ 𝑥 ) = 0 ) |
83 |
77 82
|
syldan |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) → ( 𝑓 ‘ 𝑥 ) = 0 ) |
84 |
|
undif |
⊢ ( ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ⊆ 𝐼 ↔ ( ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∪ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) = 𝐼 ) |
85 |
45 84
|
sylib |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∪ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) = 𝐼 ) |
86 |
85
|
eleq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → ( 𝑥 ∈ ( ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∪ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) ↔ 𝑥 ∈ 𝐼 ) ) |
87 |
86
|
3adant3 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → ( 𝑥 ∈ ( ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∪ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) ↔ 𝑥 ∈ 𝐼 ) ) |
88 |
87
|
biimpar |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ ( ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∪ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) ) |
89 |
|
elun |
⊢ ( 𝑥 ∈ ( ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∪ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) ↔ ( 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∨ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) ) |
90 |
88 89
|
sylib |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ∨ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ) ) ) |
91 |
71 83 90
|
mpjaodan |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) = 0 ) |
92 |
91
|
ralrimiva |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) = 0 ) |
93 |
|
fconstfv |
⊢ ( 𝑓 : 𝐼 ⟶ { 0 } ↔ ( 𝑓 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
94 |
|
c0ex |
⊢ 0 ∈ V |
95 |
94
|
fconst2 |
⊢ ( 𝑓 : 𝐼 ⟶ { 0 } ↔ 𝑓 = ( 𝐼 × { 0 } ) ) |
96 |
93 95
|
sylbb1 |
⊢ ( ( 𝑓 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) = 0 ) → 𝑓 = ( 𝐼 × { 0 } ) ) |
97 |
19 92 96
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → 𝑓 = ( 𝐼 × { 0 } ) ) |
98 |
|
isfld |
⊢ ( ℝfld ∈ Field ↔ ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) ) |
99 |
14 98
|
mpbi |
⊢ ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) |
100 |
99
|
simpli |
⊢ ℝfld ∈ DivRing |
101 |
|
drngring |
⊢ ( ℝfld ∈ DivRing → ℝfld ∈ Ring ) |
102 |
100 101
|
ax-mp |
⊢ ℝfld ∈ Ring |
103 |
7 12
|
frlm0 |
⊢ ( ( ℝfld ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 0 } ) = ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
104 |
102 103
|
mpan |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × { 0 } ) = ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
105 |
104 16
|
eqtr3di |
⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
106 |
105
|
3ad2ant1 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
107 |
16 97 106
|
3eqtr4a |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∧ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = 0 ) → 𝑓 = ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
108 |
|
cjre |
⊢ ( 𝑥 ∈ ℝ → ( ∗ ‘ 𝑥 ) = 𝑥 ) |
109 |
108
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ℝ ) → ( ∗ ‘ 𝑥 ) = 𝑥 ) |
110 |
|
id |
⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉 ) |
111 |
7 8 9 5 10 11 12 13 15 107 109 110
|
frlmphl |
⊢ ( 𝐼 ∈ 𝑉 → ( ℝfld freeLMod 𝐼 ) ∈ PreHil ) |
112 |
7
|
frlmsca |
⊢ ( ( ℝfld ∈ Field ∧ 𝐼 ∈ 𝑉 ) → ℝfld = ( Scalar ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
113 |
14 112
|
mpan |
⊢ ( 𝐼 ∈ 𝑉 → ℝfld = ( Scalar ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
114 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
115 |
113 114
|
eqtr3di |
⊢ ( 𝐼 ∈ 𝑉 → ( Scalar ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ℂfld ↾s ℝ ) ) |
116 |
|
simpr1 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓 ) ) → 𝑓 ∈ ℝ ) |
117 |
|
simpr3 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓 ) ) → 0 ≤ 𝑓 ) |
118 |
116 117
|
resqrtcld |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓 ) ) → ( √ ‘ 𝑓 ) ∈ ℝ ) |
119 |
56 57 59
|
fsumge0 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 0 ≤ Σ 𝑥 ∈ ( ( 𝑓 ∘f · 𝑓 ) supp 0 ) ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
120 |
119 50
|
breqtrrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 0 ≤ ( ℝfld Σg ( 𝑓 ∘f · 𝑓 ) ) ) |
121 |
120 24
|
breqtrrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 0 ≤ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) ) |
122 |
4 5 6 111 115 10 118 121
|
tcphcph |
⊢ ( 𝐼 ∈ 𝑉 → ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ∈ ℂPreHil ) |
123 |
3 122
|
eqeltrd |
⊢ ( 𝐼 ∈ 𝑉 → 𝐻 ∈ ℂPreHil ) |