| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxval.r |
⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) |
| 2 |
|
rrxbase.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
| 3 |
1
|
rrxval |
⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 4 |
3
|
fveq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( dist ‘ 𝐻 ) = ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 5 |
|
resrng |
⊢ ℝfld ∈ *-Ring |
| 6 |
|
srngring |
⊢ ( ℝfld ∈ *-Ring → ℝfld ∈ Ring ) |
| 7 |
5 6
|
ax-mp |
⊢ ℝfld ∈ Ring |
| 8 |
|
eqid |
⊢ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 ) |
| 9 |
8
|
frlmlmod |
⊢ ( ( ℝfld ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( ℝfld freeLMod 𝐼 ) ∈ LMod ) |
| 10 |
7 9
|
mpan |
⊢ ( 𝐼 ∈ 𝑉 → ( ℝfld freeLMod 𝐼 ) ∈ LMod ) |
| 11 |
|
lmodgrp |
⊢ ( ( ℝfld freeLMod 𝐼 ) ∈ LMod → ( ℝfld freeLMod 𝐼 ) ∈ Grp ) |
| 12 |
|
eqid |
⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 13 |
|
eqid |
⊢ ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 14 |
|
eqid |
⊢ ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 15 |
12 13 14
|
tcphds |
⊢ ( ( ℝfld freeLMod 𝐼 ) ∈ Grp → ( ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∘ ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 16 |
10 11 15
|
3syl |
⊢ ( 𝐼 ∈ 𝑉 → ( ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∘ ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 18 |
17 14
|
grpsubf |
⊢ ( ( ℝfld freeLMod 𝐼 ) ∈ Grp → ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) : ( ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) × ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ⟶ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 19 |
10 11 18
|
3syl |
⊢ ( 𝐼 ∈ 𝑉 → ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) : ( ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) × ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ⟶ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 20 |
1 2
|
rrxbase |
⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 21 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
| 22 |
|
re0g |
⊢ 0 = ( 0g ‘ ℝfld ) |
| 23 |
|
eqid |
⊢ { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 24 |
8 21 22 23
|
frlmbas |
⊢ ( ( ℝfld ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 25 |
7 24
|
mpan |
⊢ ( 𝐼 ∈ 𝑉 → { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 26 |
20 25
|
eqtrd |
⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 27 |
26
|
sqxpeqd |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) × ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 28 |
27 26
|
feq23d |
⊢ ( 𝐼 ∈ 𝑉 → ( ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ↔ ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) : ( ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) × ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ⟶ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 29 |
19 28
|
mpbird |
⊢ ( 𝐼 ∈ 𝑉 → ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 30 |
29
|
fovcdmda |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ∈ 𝐵 ) |
| 31 |
29
|
ffnd |
⊢ ( 𝐼 ∈ 𝑉 → ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) Fn ( 𝐵 × 𝐵 ) ) |
| 32 |
|
fnov |
⊢ ( ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) Fn ( 𝐵 × 𝐵 ) ↔ ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ) ) |
| 33 |
31 32
|
sylib |
⊢ ( 𝐼 ∈ 𝑉 → ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ) ) |
| 34 |
1 2
|
rrxnm |
⊢ ( 𝐼 ∈ 𝑉 → ( ℎ ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) ) = ( norm ‘ 𝐻 ) ) |
| 35 |
3
|
fveq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( norm ‘ 𝐻 ) = ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 36 |
34 35
|
eqtr2d |
⊢ ( 𝐼 ∈ 𝑉 → ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( ℎ ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) ) ) |
| 37 |
|
fveq1 |
⊢ ( ℎ = ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) → ( ℎ ‘ 𝑥 ) = ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ) |
| 38 |
37
|
oveq1d |
⊢ ( ℎ = ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) → ( ( ℎ ‘ 𝑥 ) ↑ 2 ) = ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) |
| 39 |
38
|
mpteq2dv |
⊢ ( ℎ = ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) ↑ 2 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) ) |
| 40 |
39
|
oveq2d |
⊢ ( ℎ = ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) → ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) ↑ 2 ) ) ) = ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) ) ) |
| 41 |
40
|
fveq2d |
⊢ ( ℎ = ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) → ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) = ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) ) ) ) |
| 42 |
30 33 36 41
|
fmpoco |
⊢ ( 𝐼 ∈ 𝑉 → ( ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∘ ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) ) ) ) ) |
| 43 |
|
simp1 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝐼 ∈ 𝑉 ) |
| 44 |
|
simprl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 ∈ 𝐵 ) |
| 45 |
26
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝐵 = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 46 |
44 45
|
eleqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 47 |
46
|
3impb |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 48 |
8 21 17
|
frlmbasmap |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) |
| 49 |
43 47 48
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) |
| 50 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) → 𝑓 : 𝐼 ⟶ ℝ ) |
| 51 |
49 50
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑓 : 𝐼 ⟶ ℝ ) |
| 52 |
51
|
ffnd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑓 Fn 𝐼 ) |
| 53 |
|
simprr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 ∈ 𝐵 ) |
| 54 |
53 45
|
eleqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 55 |
54
|
3impb |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 56 |
8 21 17
|
frlmbasmap |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑔 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) → 𝑔 ∈ ( ℝ ↑m 𝐼 ) ) |
| 57 |
43 55 56
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ ( ℝ ↑m 𝐼 ) ) |
| 58 |
|
elmapi |
⊢ ( 𝑔 ∈ ( ℝ ↑m 𝐼 ) → 𝑔 : 𝐼 ⟶ ℝ ) |
| 59 |
57 58
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 : 𝐼 ⟶ ℝ ) |
| 60 |
59
|
ffnd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 Fn 𝐼 ) |
| 61 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
| 62 |
|
eqidd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 63 |
|
eqidd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 64 |
52 60 43 43 61 62 63
|
offval |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑓 ∘f ( -g ‘ ℝfld ) 𝑔 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( -g ‘ ℝfld ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 65 |
7
|
a1i |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ℝfld ∈ Ring ) |
| 66 |
|
simpl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑉 ) |
| 67 |
|
eqid |
⊢ ( -g ‘ ℝfld ) = ( -g ‘ ℝfld ) |
| 68 |
8 17 65 66 46 54 67 14
|
frlmsubgval |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) = ( 𝑓 ∘f ( -g ‘ ℝfld ) 𝑔 ) ) |
| 69 |
68
|
3impb |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) = ( 𝑓 ∘f ( -g ‘ ℝfld ) 𝑔 ) ) |
| 70 |
51
|
ffvelcdmda |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
| 71 |
59
|
ffvelcdmda |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) |
| 72 |
67
|
resubgval |
⊢ ( ( ( 𝑓 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) → ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( -g ‘ ℝfld ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 73 |
70 71 72
|
syl2anc |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( -g ‘ ℝfld ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 74 |
73
|
mpteq2dva |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( -g ‘ ℝfld ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 75 |
64 69 74
|
3eqtr4d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 76 |
70 71
|
resubcld |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) |
| 77 |
75 76
|
fvmpt2d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ) |
| 78 |
77
|
oveq1d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) = ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 79 |
78
|
mpteq2dva |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) |
| 80 |
79
|
oveq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) ) = ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) |
| 81 |
80
|
fveq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) ) ) = ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) |
| 82 |
81
|
mpoeq3dva |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑔 ) ‘ 𝑥 ) ↑ 2 ) ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) ) |
| 83 |
42 82
|
eqtrd |
⊢ ( 𝐼 ∈ 𝑉 → ( ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ∘ ( -g ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) ) |
| 84 |
4 16 83
|
3eqtr2rd |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) = ( dist ‘ 𝐻 ) ) |