| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxmval.1 |
⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
rrxmval.d |
⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) |
| 3 |
|
rrxdstprj1.1 |
⊢ 𝑀 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
| 4 |
|
simplll |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → 𝐼 ∈ 𝑉 ) |
| 5 |
|
simpr |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) |
| 6 |
|
simplr |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) |
| 7 |
|
simprl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 ∈ 𝑋 ) |
| 8 |
1 7
|
rrxfsupp |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 supp 0 ) ∈ Fin ) |
| 9 |
|
simprr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 ∈ 𝑋 ) |
| 10 |
1 9
|
rrxfsupp |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐺 supp 0 ) ∈ Fin ) |
| 11 |
|
unfi |
⊢ ( ( ( 𝐹 supp 0 ) ∈ Fin ∧ ( 𝐺 supp 0 ) ∈ Fin ) → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ∈ Fin ) |
| 12 |
8 10 11
|
syl2anc |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ∈ Fin ) |
| 13 |
1 7
|
rrxsuppss |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 supp 0 ) ⊆ 𝐼 ) |
| 14 |
1 9
|
rrxsuppss |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐺 supp 0 ) ⊆ 𝐼 ) |
| 15 |
13 14
|
unssd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ⊆ 𝐼 ) |
| 16 |
15
|
sselda |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → 𝑘 ∈ 𝐼 ) |
| 17 |
1 7
|
rrxf |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 : 𝐼 ⟶ ℝ ) |
| 18 |
17
|
ffvelcdmda |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 19 |
1 9
|
rrxf |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 : 𝐼 ⟶ ℝ ) |
| 20 |
19
|
ffvelcdmda |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 21 |
18 20
|
resubcld |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 22 |
21
|
resqcld |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ) |
| 23 |
16 22
|
syldan |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ) |
| 24 |
21
|
sqge0d |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → 0 ≤ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 25 |
16 24
|
syldan |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → 0 ≤ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 26 |
|
fveq2 |
⊢ ( 𝑘 = 𝐴 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑘 = 𝐴 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝐴 ) ) |
| 28 |
26 27
|
oveq12d |
⊢ ( 𝑘 = 𝐴 → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) |
| 29 |
28
|
oveq1d |
⊢ ( 𝑘 = 𝐴 → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ↑ 2 ) ) |
| 30 |
|
simplr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) |
| 31 |
12 23 25 29 30
|
fsumge1 |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ↑ 2 ) ≤ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 32 |
15 30
|
sseldd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐴 ∈ 𝐼 ) |
| 33 |
17 32
|
ffvelcdmd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 34 |
19 32
|
ffvelcdmd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) |
| 35 |
33 34
|
resubcld |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ∈ ℝ ) |
| 36 |
|
absresq |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ∈ ℝ → ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ↑ 2 ) ) |
| 37 |
35 36
|
syl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ↑ 2 ) ) |
| 38 |
12 23
|
fsumrecl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ) |
| 39 |
12 23 25
|
fsumge0 |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 40 |
|
resqrtth |
⊢ ( ( Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ∧ 0 ≤ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) → ( ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) = Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 41 |
38 39 40
|
syl2anc |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) = Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 42 |
31 37 41
|
3brtr4d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ↑ 2 ) ≤ ( ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) ) |
| 43 |
35
|
recnd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ∈ ℂ ) |
| 44 |
43
|
abscld |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 45 |
38 39
|
resqrtcld |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ∈ ℝ ) |
| 46 |
43
|
absge0d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 47 |
38 39
|
sqrtge0d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 48 |
44 45 46 47
|
le2sqd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ≤ ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↔ ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ↑ 2 ) ≤ ( ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) ) ) |
| 49 |
42 48
|
mpbird |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ≤ ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 50 |
3
|
remetdval |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 51 |
33 34 50
|
syl2anc |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 52 |
1 2
|
rrxmval |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 𝐷 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 53 |
52
|
3expb |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 𝐷 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 54 |
53
|
adantlr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 𝐷 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 55 |
49 51 54
|
3brtr4d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) ≤ ( 𝐹 𝐷 𝐺 ) ) |
| 56 |
4 5 6 55
|
syl21anc |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) ≤ ( 𝐹 𝐷 𝐺 ) ) |
| 57 |
|
simplll |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝐼 ∈ 𝑉 ) |
| 58 |
|
simplrl |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝐹 ∈ 𝑋 ) |
| 59 |
|
ssun1 |
⊢ ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) |
| 60 |
59
|
a1i |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) |
| 61 |
60
|
sscond |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ⊆ ( 𝐼 ∖ ( 𝐹 supp 0 ) ) ) |
| 62 |
61
|
sselda |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝐴 ∈ ( 𝐼 ∖ ( 𝐹 supp 0 ) ) ) |
| 63 |
|
simpr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ) → 𝐹 ∈ 𝑋 ) |
| 64 |
1 63
|
rrxf |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ) → 𝐹 : 𝐼 ⟶ ℝ ) |
| 65 |
|
ssidd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ) → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 66 |
|
simpl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ) → 𝐼 ∈ 𝑉 ) |
| 67 |
|
0red |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ) → 0 ∈ ℝ ) |
| 68 |
64 65 66 67
|
suppssr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ‘ 𝐴 ) = 0 ) |
| 69 |
57 58 62 68
|
syl21anc |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐹 ‘ 𝐴 ) = 0 ) |
| 70 |
|
0red |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 0 ∈ ℝ ) |
| 71 |
69 70
|
eqeltrd |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 72 |
|
simplrr |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝐺 ∈ 𝑋 ) |
| 73 |
|
ssun2 |
⊢ ( 𝐺 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) |
| 74 |
73
|
a1i |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐺 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) |
| 75 |
74
|
sscond |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ⊆ ( 𝐼 ∖ ( 𝐺 supp 0 ) ) ) |
| 76 |
75
|
sselda |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝐴 ∈ ( 𝐼 ∖ ( 𝐺 supp 0 ) ) ) |
| 77 |
|
simpr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋 ) → 𝐺 ∈ 𝑋 ) |
| 78 |
1 77
|
rrxf |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋 ) → 𝐺 : 𝐼 ⟶ ℝ ) |
| 79 |
|
ssidd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐺 supp 0 ) ⊆ ( 𝐺 supp 0 ) ) |
| 80 |
|
simpl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋 ) → 𝐼 ∈ 𝑉 ) |
| 81 |
|
0red |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋 ) → 0 ∈ ℝ ) |
| 82 |
78 79 80 81
|
suppssr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( 𝐺 supp 0 ) ) ) → ( 𝐺 ‘ 𝐴 ) = 0 ) |
| 83 |
57 72 76 82
|
syl21anc |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐺 ‘ 𝐴 ) = 0 ) |
| 84 |
83 70
|
eqeltrd |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) |
| 85 |
71 84 50
|
syl2anc |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 86 |
69 83
|
oveq12d |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) = ( 0 − 0 ) ) |
| 87 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
| 88 |
86 87
|
eqtrdi |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) = 0 ) |
| 89 |
88
|
abs00bd |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) = 0 ) |
| 90 |
85 89
|
eqtrd |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) = 0 ) |
| 91 |
1 2
|
rrxmet |
⊢ ( 𝐼 ∈ 𝑉 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 92 |
91
|
ad3antrrr |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 93 |
|
metge0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 0 ≤ ( 𝐹 𝐷 𝐺 ) ) |
| 94 |
92 58 72 93
|
syl3anc |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 0 ≤ ( 𝐹 𝐷 𝐺 ) ) |
| 95 |
90 94
|
eqbrtrd |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) ≤ ( 𝐹 𝐷 𝐺 ) ) |
| 96 |
|
simplr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐴 ∈ 𝐼 ) |
| 97 |
|
simprl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 ∈ 𝑋 ) |
| 98 |
1 97
|
rrxsuppss |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 supp 0 ) ⊆ 𝐼 ) |
| 99 |
|
simprr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 ∈ 𝑋 ) |
| 100 |
1 99
|
rrxsuppss |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐺 supp 0 ) ⊆ 𝐼 ) |
| 101 |
98 100
|
unssd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ⊆ 𝐼 ) |
| 102 |
|
undif |
⊢ ( ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ⊆ 𝐼 ↔ ( ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ∪ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) = 𝐼 ) |
| 103 |
101 102
|
sylib |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ∪ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) = 𝐼 ) |
| 104 |
96 103
|
eleqtrrd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐴 ∈ ( ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ∪ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) ) |
| 105 |
|
elun |
⊢ ( 𝐴 ∈ ( ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ∪ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) ↔ ( 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ∨ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) ) |
| 106 |
104 105
|
sylib |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ∨ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) ) |
| 107 |
56 95 106
|
mpjaodan |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) ≤ ( 𝐹 𝐷 𝐺 ) ) |