Metamath Proof Explorer


Theorem rrxf

Description: Euclidean vectors as functions. (Contributed by Thierry Arnoux, 7-Jul-2019)

Ref Expression
Hypotheses rrxmval.1 𝑋 = { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 }
rrxf.1 ( 𝜑𝐹𝑋 )
Assertion rrxf ( 𝜑𝐹 : 𝐼 ⟶ ℝ )

Proof

Step Hyp Ref Expression
1 rrxmval.1 𝑋 = { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 }
2 rrxf.1 ( 𝜑𝐹𝑋 )
3 1 ssrab3 𝑋 ⊆ ( ℝ ↑m 𝐼 )
4 3 2 sselid ( 𝜑𝐹 ∈ ( ℝ ↑m 𝐼 ) )
5 elmapi ( 𝐹 ∈ ( ℝ ↑m 𝐼 ) → 𝐹 : 𝐼 ⟶ ℝ )
6 4 5 syl ( 𝜑𝐹 : 𝐼 ⟶ ℝ )