Metamath Proof Explorer
Description: Euclidean vectors as functions. (Contributed by Thierry Arnoux, 7-Jul-2019)
|
|
Ref |
Expression |
|
Hypotheses |
rrxmval.1 |
⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
|
|
rrxf.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) |
|
Assertion |
rrxf |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ℝ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rrxmval.1 |
⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
2 |
|
rrxf.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) |
3 |
1
|
ssrab3 |
⊢ 𝑋 ⊆ ( ℝ ↑m 𝐼 ) |
4 |
3 2
|
sselid |
⊢ ( 𝜑 → 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) |
5 |
|
elmapi |
⊢ ( 𝐹 ∈ ( ℝ ↑m 𝐼 ) → 𝐹 : 𝐼 ⟶ ℝ ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ℝ ) |