Metamath Proof Explorer


Theorem rrxfsupp

Description: Euclidean vectors are of finite support. (Contributed by Thierry Arnoux, 7-Jul-2019)

Ref Expression
Hypotheses rrxmval.1 𝑋 = { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 }
rrxf.1 ( 𝜑𝐹𝑋 )
Assertion rrxfsupp ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 rrxmval.1 𝑋 = { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 }
2 rrxf.1 ( 𝜑𝐹𝑋 )
3 2 1 eleqtrdi ( 𝜑𝐹 ∈ { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 } )
4 breq1 ( = 𝐹 → ( finSupp 0 ↔ 𝐹 finSupp 0 ) )
5 4 elrab ( 𝐹 ∈ { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 } ↔ ( 𝐹 ∈ ( ℝ ↑m 𝐼 ) ∧ 𝐹 finSupp 0 ) )
6 3 5 sylib ( 𝜑 → ( 𝐹 ∈ ( ℝ ↑m 𝐼 ) ∧ 𝐹 finSupp 0 ) )
7 6 simprd ( 𝜑𝐹 finSupp 0 )
8 7 fsuppimpd ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin )