Description: Euclidean vectors are of finite support. (Contributed by Thierry Arnoux, 7-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rrxmval.1 | ⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } | |
rrxf.1 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) | ||
Assertion | rrxfsupp | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxmval.1 | ⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } | |
2 | rrxf.1 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) | |
3 | 2 1 | eleqtrdi | ⊢ ( 𝜑 → 𝐹 ∈ { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
4 | breq1 | ⊢ ( ℎ = 𝐹 → ( ℎ finSupp 0 ↔ 𝐹 finSupp 0 ) ) | |
5 | 4 | elrab | ⊢ ( 𝐹 ∈ { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↔ ( 𝐹 ∈ ( ℝ ↑m 𝐼 ) ∧ 𝐹 finSupp 0 ) ) |
6 | 3 5 | sylib | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ℝ ↑m 𝐼 ) ∧ 𝐹 finSupp 0 ) ) |
7 | 6 | simprd | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
8 | 7 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |