| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxlinesc.e |
⊢ 𝐸 = ( ℝ^ ‘ 𝐼 ) |
| 2 |
|
rrxlinesc.p |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
| 3 |
|
rrxlinesc.l |
⊢ 𝐿 = ( LineM ‘ 𝐸 ) |
| 4 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐸 ) = ( ·𝑠 ‘ 𝐸 ) |
| 5 |
|
eqid |
⊢ ( +g ‘ 𝐸 ) = ( +g ‘ 𝐸 ) |
| 6 |
1 2 3 4 5
|
rrxlines |
⊢ ( 𝐼 ∈ Fin → 𝐿 = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) ( ·𝑠 ‘ 𝐸 ) 𝑥 ) ( +g ‘ 𝐸 ) ( 𝑡 ( ·𝑠 ‘ 𝐸 ) 𝑦 ) ) } ) ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 8 |
|
simpll1 |
⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑡 ∈ ℝ ) → 𝐼 ∈ Fin ) |
| 9 |
|
1red |
⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑡 ∈ ℝ ) → 1 ∈ ℝ ) |
| 10 |
|
simpr |
⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑡 ∈ ℝ ) → 𝑡 ∈ ℝ ) |
| 11 |
9 10
|
resubcld |
⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑡 ∈ ℝ ) → ( 1 − 𝑡 ) ∈ ℝ ) |
| 12 |
|
id |
⊢ ( 𝐼 ∈ Fin → 𝐼 ∈ Fin ) |
| 13 |
12 1 7
|
rrxbasefi |
⊢ ( 𝐼 ∈ Fin → ( Base ‘ 𝐸 ) = ( ℝ ↑m 𝐼 ) ) |
| 14 |
2 13
|
eqtr4id |
⊢ ( 𝐼 ∈ Fin → 𝑃 = ( Base ‘ 𝐸 ) ) |
| 15 |
14
|
eleq2d |
⊢ ( 𝐼 ∈ Fin → ( 𝑥 ∈ 𝑃 ↔ 𝑥 ∈ ( Base ‘ 𝐸 ) ) ) |
| 16 |
15
|
biimpa |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ) → 𝑥 ∈ ( Base ‘ 𝐸 ) ) |
| 17 |
16
|
3adant3 |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) → 𝑥 ∈ ( Base ‘ 𝐸 ) ) |
| 18 |
17
|
ad2antrr |
⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑡 ∈ ℝ ) → 𝑥 ∈ ( Base ‘ 𝐸 ) ) |
| 19 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) → 𝑦 ∈ 𝑃 ) |
| 20 |
14
|
eleq2d |
⊢ ( 𝐼 ∈ Fin → ( 𝑦 ∈ 𝑃 ↔ 𝑦 ∈ ( Base ‘ 𝐸 ) ) ) |
| 21 |
19 20
|
imbitrid |
⊢ ( 𝐼 ∈ Fin → ( 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) → 𝑦 ∈ ( Base ‘ 𝐸 ) ) ) |
| 22 |
21
|
a1d |
⊢ ( 𝐼 ∈ Fin → ( 𝑥 ∈ 𝑃 → ( 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) → 𝑦 ∈ ( Base ‘ 𝐸 ) ) ) ) |
| 23 |
22
|
3imp |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) → 𝑦 ∈ ( Base ‘ 𝐸 ) ) |
| 24 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑡 ∈ ℝ ) → 𝑦 ∈ ( Base ‘ 𝐸 ) ) |
| 25 |
14
|
3ad2ant1 |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) → 𝑃 = ( Base ‘ 𝐸 ) ) |
| 26 |
25
|
eleq2d |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) → ( 𝑝 ∈ 𝑃 ↔ 𝑝 ∈ ( Base ‘ 𝐸 ) ) ) |
| 27 |
26
|
biimpa |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) → 𝑝 ∈ ( Base ‘ 𝐸 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑡 ∈ ℝ ) → 𝑝 ∈ ( Base ‘ 𝐸 ) ) |
| 29 |
1 7 4 8 11 18 24 28 5 10
|
rrxplusgvscavalb |
⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑡 ∈ ℝ ) → ( 𝑝 = ( ( ( 1 − 𝑡 ) ( ·𝑠 ‘ 𝐸 ) 𝑥 ) ( +g ‘ 𝐸 ) ( 𝑡 ( ·𝑠 ‘ 𝐸 ) 𝑦 ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 30 |
29
|
rexbidva |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) ( ·𝑠 ‘ 𝐸 ) 𝑥 ) ( +g ‘ 𝐸 ) ( 𝑡 ( ·𝑠 ‘ 𝐸 ) 𝑦 ) ) ↔ ∃ 𝑡 ∈ ℝ ∀ 𝑖 ∈ 𝐼 ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 31 |
30
|
rabbidva |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) → { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) ( ·𝑠 ‘ 𝐸 ) 𝑥 ) ( +g ‘ 𝐸 ) ( 𝑡 ( ·𝑠 ‘ 𝐸 ) 𝑦 ) ) } = { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ ∀ 𝑖 ∈ 𝐼 ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) } ) |
| 32 |
31
|
mpoeq3dva |
⊢ ( 𝐼 ∈ Fin → ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) ( ·𝑠 ‘ 𝐸 ) 𝑥 ) ( +g ‘ 𝐸 ) ( 𝑡 ( ·𝑠 ‘ 𝐸 ) 𝑦 ) ) } ) = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ ∀ 𝑖 ∈ 𝐼 ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) } ) ) |
| 33 |
6 32
|
eqtrd |
⊢ ( 𝐼 ∈ Fin → 𝐿 = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ ∀ 𝑖 ∈ 𝐼 ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) } ) ) |