| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxmetfi.1 |
⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) |
| 2 |
|
eqid |
⊢ { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 3 |
2 1
|
rrxmet |
⊢ ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ) |
| 4 |
|
eqid |
⊢ ( ℝ^ ‘ 𝐼 ) = ( ℝ^ ‘ 𝐼 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) |
| 6 |
4 5
|
rrxbase |
⊢ ( 𝐼 ∈ Fin → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 7 |
|
id |
⊢ ( 𝐼 ∈ Fin → 𝐼 ∈ Fin ) |
| 8 |
7 4 5
|
rrxbasefi |
⊢ ( 𝐼 ∈ Fin → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( ℝ ↑m 𝐼 ) ) |
| 9 |
6 8
|
eqtr3d |
⊢ ( 𝐼 ∈ Fin → { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } = ( ℝ ↑m 𝐼 ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝐼 ∈ Fin → ( Met ‘ { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) = ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 11 |
3 10
|
eleqtrd |
⊢ ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |