Metamath Proof Explorer


Theorem rrxmetfi

Description: Euclidean space is a metric space. Finite dimensional version. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrxmetfi.1 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) )
Assertion rrxmetfi ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) )

Proof

Step Hyp Ref Expression
1 rrxmetfi.1 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) )
2 eqid { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 } = { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 }
3 2 1 rrxmet ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 } ) )
4 eqid ( ℝ^ ‘ 𝐼 ) = ( ℝ^ ‘ 𝐼 )
5 eqid ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) )
6 4 5 rrxbase ( 𝐼 ∈ Fin → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 } )
7 id ( 𝐼 ∈ Fin → 𝐼 ∈ Fin )
8 7 4 5 rrxbasefi ( 𝐼 ∈ Fin → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( ℝ ↑m 𝐼 ) )
9 6 8 eqtr3d ( 𝐼 ∈ Fin → { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 } = ( ℝ ↑m 𝐼 ) )
10 9 fveq2d ( 𝐼 ∈ Fin → ( Met ‘ { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 } ) = ( Met ‘ ( ℝ ↑m 𝐼 ) ) )
11 3 10 eleqtrd ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) )