Step |
Hyp |
Ref |
Expression |
1 |
|
rrxmval.1 |
⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
2 |
|
rrxmval.d |
⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) |
3 |
|
rrxmetlem.1 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
4 |
|
rrxmetlem.2 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) |
5 |
|
rrxmetlem.3 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑋 ) |
6 |
|
rrxmetlem.4 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐼 ) |
7 |
|
rrxmetlem.5 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
8 |
|
rrxmetlem.6 |
⊢ ( 𝜑 → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ⊆ 𝐴 ) |
9 |
8 6
|
sstrd |
⊢ ( 𝜑 → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ⊆ 𝐼 ) |
10 |
9
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → 𝑘 ∈ 𝐼 ) |
11 |
1 4
|
rrxf |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ℝ ) |
12 |
11
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
13 |
12
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
14 |
10 13
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
15 |
1 5
|
rrxf |
⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ ℝ ) |
16 |
15
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
17 |
16
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
18 |
10 17
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
19 |
14 18
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
20 |
19
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℂ ) |
21 |
6
|
ssdifd |
⊢ ( 𝜑 → ( 𝐴 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ⊆ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) |
22 |
21
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) |
24 |
23
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝑘 ∈ 𝐼 ) |
25 |
24 13
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
26 |
|
ssun1 |
⊢ ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) |
27 |
26
|
a1i |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) |
28 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
29 |
11 27 3 28
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) = 0 ) |
30 |
|
ssun2 |
⊢ ( 𝐺 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) |
31 |
30
|
a1i |
⊢ ( 𝜑 → ( 𝐺 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) |
32 |
15 31 3 28
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐺 ‘ 𝑘 ) = 0 ) |
33 |
29 32
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
34 |
25 33
|
subeq0bd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) = 0 ) |
35 |
34
|
sq0id |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) = 0 ) |
36 |
22 35
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) = 0 ) |
37 |
8 20 36 7
|
fsumss |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝐴 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |