Metamath Proof Explorer


Theorem rrxmetlem

Description: Lemma for rrxmet . (Contributed by Thierry Arnoux, 5-Jul-2019)

Ref Expression
Hypotheses rrxmval.1 𝑋 = { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 }
rrxmval.d 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) )
rrxmetlem.1 ( 𝜑𝐼𝑉 )
rrxmetlem.2 ( 𝜑𝐹𝑋 )
rrxmetlem.3 ( 𝜑𝐺𝑋 )
rrxmetlem.4 ( 𝜑𝐴𝐼 )
rrxmetlem.5 ( 𝜑𝐴 ∈ Fin )
rrxmetlem.6 ( 𝜑 → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ⊆ 𝐴 )
Assertion rrxmetlem ( 𝜑 → Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) = Σ 𝑘𝐴 ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) )

Proof

Step Hyp Ref Expression
1 rrxmval.1 𝑋 = { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 }
2 rrxmval.d 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) )
3 rrxmetlem.1 ( 𝜑𝐼𝑉 )
4 rrxmetlem.2 ( 𝜑𝐹𝑋 )
5 rrxmetlem.3 ( 𝜑𝐺𝑋 )
6 rrxmetlem.4 ( 𝜑𝐴𝐼 )
7 rrxmetlem.5 ( 𝜑𝐴 ∈ Fin )
8 rrxmetlem.6 ( 𝜑 → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ⊆ 𝐴 )
9 8 6 sstrd ( 𝜑 → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ⊆ 𝐼 )
10 9 sselda ( ( 𝜑𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → 𝑘𝐼 )
11 1 4 rrxf ( 𝜑𝐹 : 𝐼 ⟶ ℝ )
12 11 ffvelrnda ( ( 𝜑𝑘𝐼 ) → ( 𝐹𝑘 ) ∈ ℝ )
13 12 recnd ( ( 𝜑𝑘𝐼 ) → ( 𝐹𝑘 ) ∈ ℂ )
14 10 13 syldan ( ( 𝜑𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( 𝐹𝑘 ) ∈ ℂ )
15 1 5 rrxf ( 𝜑𝐺 : 𝐼 ⟶ ℝ )
16 15 ffvelrnda ( ( 𝜑𝑘𝐼 ) → ( 𝐺𝑘 ) ∈ ℝ )
17 16 recnd ( ( 𝜑𝑘𝐼 ) → ( 𝐺𝑘 ) ∈ ℂ )
18 10 17 syldan ( ( 𝜑𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( 𝐺𝑘 ) ∈ ℂ )
19 14 18 subcld ( ( 𝜑𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ∈ ℂ )
20 19 sqcld ( ( 𝜑𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) ∈ ℂ )
21 6 ssdifd ( 𝜑 → ( 𝐴 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ⊆ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) )
22 21 sselda ( ( 𝜑𝑘 ∈ ( 𝐴 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) )
23 simpr ( ( 𝜑𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) )
24 23 eldifad ( ( 𝜑𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝑘𝐼 )
25 24 13 syldan ( ( 𝜑𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐹𝑘 ) ∈ ℂ )
26 ssun1 ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) )
27 26 a1i ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) )
28 0red ( 𝜑 → 0 ∈ ℝ )
29 11 27 3 28 suppssr ( ( 𝜑𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐹𝑘 ) = 0 )
30 ssun2 ( 𝐺 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) )
31 30 a1i ( 𝜑 → ( 𝐺 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) )
32 15 31 3 28 suppssr ( ( 𝜑𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐺𝑘 ) = 0 )
33 29 32 eqtr4d ( ( 𝜑𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐹𝑘 ) = ( 𝐺𝑘 ) )
34 25 33 subeq0bd ( ( 𝜑𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) = 0 )
35 34 sq0id ( ( 𝜑𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) = 0 )
36 22 35 syldan ( ( 𝜑𝑘 ∈ ( 𝐴 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) = 0 )
37 8 20 36 7 fsumss ( 𝜑 → Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) = Σ 𝑘𝐴 ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) )