Metamath Proof Explorer


Theorem rrxmfval

Description: The value of the Euclidean metric. Compare with rrnval . (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypotheses rrxmval.1 𝑋 = { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 }
rrxmval.d 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) )
Assertion rrxmfval ( 𝐼𝑉𝐷 = ( 𝑓𝑋 , 𝑔𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ ( ( 𝑓 supp 0 ) ∪ ( 𝑔 supp 0 ) ) ( ( ( 𝑓𝑘 ) − ( 𝑔𝑘 ) ) ↑ 2 ) ) ) )

Proof

Step Hyp Ref Expression
1 rrxmval.1 𝑋 = { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 }
2 rrxmval.d 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) )
3 eqid ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥𝐼 ↦ ( ( ( 𝑓𝑥 ) − ( 𝑔𝑥 ) ) ↑ 2 ) ) ) ) ) = ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥𝐼 ↦ ( ( ( 𝑓𝑥 ) − ( 𝑔𝑥 ) ) ↑ 2 ) ) ) ) )
4 fvex ( √ ‘ ( ℝfld Σg ( 𝑥𝐼 ↦ ( ( ( 𝑓𝑥 ) − ( 𝑔𝑥 ) ) ↑ 2 ) ) ) ) ∈ V
5 3 4 fnmpoi ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥𝐼 ↦ ( ( ( 𝑓𝑥 ) − ( 𝑔𝑥 ) ) ↑ 2 ) ) ) ) ) Fn ( ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) × ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) )
6 eqid ( ℝ^ ‘ 𝐼 ) = ( ℝ^ ‘ 𝐼 )
7 eqid ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) )
8 6 7 rrxds ( 𝐼𝑉 → ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥𝐼 ↦ ( ( ( 𝑓𝑥 ) − ( 𝑔𝑥 ) ) ↑ 2 ) ) ) ) ) = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) )
9 2 8 eqtr4id ( 𝐼𝑉𝐷 = ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥𝐼 ↦ ( ( ( 𝑓𝑥 ) − ( 𝑔𝑥 ) ) ↑ 2 ) ) ) ) ) )
10 6 7 rrxbase ( 𝐼𝑉 → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 } )
11 1 10 eqtr4id ( 𝐼𝑉𝑋 = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) )
12 11 sqxpeqd ( 𝐼𝑉 → ( 𝑋 × 𝑋 ) = ( ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) × ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) )
13 9 12 fneq12d ( 𝐼𝑉 → ( 𝐷 Fn ( 𝑋 × 𝑋 ) ↔ ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥𝐼 ↦ ( ( ( 𝑓𝑥 ) − ( 𝑔𝑥 ) ) ↑ 2 ) ) ) ) ) Fn ( ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) × ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) )
14 5 13 mpbiri ( 𝐼𝑉𝐷 Fn ( 𝑋 × 𝑋 ) )
15 fnov ( 𝐷 Fn ( 𝑋 × 𝑋 ) ↔ 𝐷 = ( 𝑓𝑋 , 𝑔𝑋 ↦ ( 𝑓 𝐷 𝑔 ) ) )
16 14 15 sylib ( 𝐼𝑉𝐷 = ( 𝑓𝑋 , 𝑔𝑋 ↦ ( 𝑓 𝐷 𝑔 ) ) )
17 1 2 rrxmval ( ( 𝐼𝑉𝑓𝑋𝑔𝑋 ) → ( 𝑓 𝐷 𝑔 ) = ( √ ‘ Σ 𝑘 ∈ ( ( 𝑓 supp 0 ) ∪ ( 𝑔 supp 0 ) ) ( ( ( 𝑓𝑘 ) − ( 𝑔𝑘 ) ) ↑ 2 ) ) )
18 17 mpoeq3dva ( 𝐼𝑉 → ( 𝑓𝑋 , 𝑔𝑋 ↦ ( 𝑓 𝐷 𝑔 ) ) = ( 𝑓𝑋 , 𝑔𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ ( ( 𝑓 supp 0 ) ∪ ( 𝑔 supp 0 ) ) ( ( ( 𝑓𝑘 ) − ( 𝑔𝑘 ) ) ↑ 2 ) ) ) )
19 16 18 eqtrd ( 𝐼𝑉𝐷 = ( 𝑓𝑋 , 𝑔𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ ( ( 𝑓 supp 0 ) ∪ ( 𝑔 supp 0 ) ) ( ( ( 𝑓𝑘 ) − ( 𝑔𝑘 ) ) ↑ 2 ) ) ) )