Step |
Hyp |
Ref |
Expression |
1 |
|
rrxmval.1 |
⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
2 |
|
rrxmval.d |
⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) |
3 |
|
eqid |
⊢ ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) = ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) |
4 |
|
fvex |
⊢ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ∈ V |
5 |
3 4
|
fnmpoi |
⊢ ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) Fn ( ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) × ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
6 |
|
eqid |
⊢ ( ℝ^ ‘ 𝐼 ) = ( ℝ^ ‘ 𝐼 ) |
7 |
|
eqid |
⊢ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) |
8 |
6 7
|
rrxds |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
9 |
2 8
|
eqtr4id |
⊢ ( 𝐼 ∈ 𝑉 → 𝐷 = ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) ) |
10 |
6 7
|
rrxbase |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
11 |
1 10
|
eqtr4id |
⊢ ( 𝐼 ∈ 𝑉 → 𝑋 = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
12 |
11
|
sqxpeqd |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑋 × 𝑋 ) = ( ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) × ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) |
13 |
9 12
|
fneq12d |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐷 Fn ( 𝑋 × 𝑋 ) ↔ ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) Fn ( ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) × ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) ) |
14 |
5 13
|
mpbiri |
⊢ ( 𝐼 ∈ 𝑉 → 𝐷 Fn ( 𝑋 × 𝑋 ) ) |
15 |
|
fnov |
⊢ ( 𝐷 Fn ( 𝑋 × 𝑋 ) ↔ 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( 𝑓 𝐷 𝑔 ) ) ) |
16 |
14 15
|
sylib |
⊢ ( 𝐼 ∈ 𝑉 → 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( 𝑓 𝐷 𝑔 ) ) ) |
17 |
1 2
|
rrxmval |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( 𝑓 𝐷 𝑔 ) = ( √ ‘ Σ 𝑘 ∈ ( ( 𝑓 supp 0 ) ∪ ( 𝑔 supp 0 ) ) ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
18 |
17
|
mpoeq3dva |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( 𝑓 𝐷 𝑔 ) ) = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ ( ( 𝑓 supp 0 ) ∪ ( 𝑔 supp 0 ) ) ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
19 |
16 18
|
eqtrd |
⊢ ( 𝐼 ∈ 𝑉 → 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ ( ( 𝑓 supp 0 ) ∪ ( 𝑔 supp 0 ) ) ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |