Step |
Hyp |
Ref |
Expression |
1 |
|
rrxmval.1 |
⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
2 |
|
simprl |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
3 |
|
0cn |
⊢ 0 ∈ ℂ |
4 |
2 3
|
eqeltrdi |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
5 |
|
simprr |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) → ( 𝐺 ‘ 𝑥 ) = 0 ) |
6 |
2 5
|
eqtr4d |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
7 |
4 6
|
subeq0bd |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) = 0 ) |
8 |
7
|
sq0id |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) = 0 ) |
9 |
8
|
ex |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) → ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) = 0 ) ) |
10 |
|
ioran |
⊢ ( ¬ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∨ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ↔ ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 0 ∧ ¬ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ) |
11 |
|
nne |
⊢ ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 0 ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) |
12 |
|
nne |
⊢ ( ¬ ( 𝐺 ‘ 𝑥 ) ≠ 0 ↔ ( 𝐺 ‘ 𝑥 ) = 0 ) |
13 |
11 12
|
anbi12i |
⊢ ( ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 0 ∧ ¬ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) |
14 |
10 13
|
bitri |
⊢ ( ¬ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∨ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) |
15 |
14
|
a1i |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ¬ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∨ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) ) |
16 |
|
eqidd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
17 |
|
simpr |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 = 𝑥 ) → 𝑘 = 𝑥 ) |
18 |
17
|
fveq2d |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 = 𝑥 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑥 ) ) |
19 |
17
|
fveq2d |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 = 𝑥 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑥 ) ) |
20 |
18 19
|
oveq12d |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 = 𝑥 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
21 |
20
|
oveq1d |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 = 𝑥 ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) ) |
22 |
|
simpr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
23 |
|
ovex |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) ∈ V |
24 |
23
|
a1i |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) ∈ V ) |
25 |
16 21 22 24
|
fvmptd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) ) |
26 |
25
|
neeq1d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 ↔ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) ≠ 0 ) ) |
27 |
26
|
bicomd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) ≠ 0 ↔ ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 ) ) |
28 |
27
|
necon1bbid |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ¬ ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 ↔ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) = 0 ) ) |
29 |
9 15 28
|
3imtr4d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ¬ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∨ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) → ¬ ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 ) ) |
30 |
29
|
con4d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 → ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∨ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ) ) |
31 |
30
|
ss2rabdv |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → { 𝑥 ∈ 𝐼 ∣ ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 } ⊆ { 𝑥 ∈ 𝐼 ∣ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∨ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) } ) |
32 |
|
unrab |
⊢ ( { 𝑥 ∈ 𝐼 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 0 } ∪ { 𝑥 ∈ 𝐼 ∣ ( 𝐺 ‘ 𝑥 ) ≠ 0 } ) = { 𝑥 ∈ 𝐼 ∣ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∨ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) } |
33 |
31 32
|
sseqtrrdi |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → { 𝑥 ∈ 𝐼 ∣ ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 } ⊆ ( { 𝑥 ∈ 𝐼 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 0 } ∪ { 𝑥 ∈ 𝐼 ∣ ( 𝐺 ‘ 𝑥 ) ≠ 0 } ) ) |
34 |
|
simp1 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐼 ∈ 𝑉 ) |
35 |
|
ovex |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ V |
36 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
37 |
35 36
|
fnmpti |
⊢ ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) Fn 𝐼 |
38 |
|
suppvalfn |
⊢ ( ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ ℂ ) → ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 } ) |
39 |
37 3 38
|
mp3an13 |
⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 } ) |
40 |
34 39
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 } ) |
41 |
|
elrabi |
⊢ ( 𝐹 ∈ { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } → 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) |
42 |
41 1
|
eleq2s |
⊢ ( 𝐹 ∈ 𝑋 → 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) |
43 |
|
elmapi |
⊢ ( 𝐹 ∈ ( ℝ ↑m 𝐼 ) → 𝐹 : 𝐼 ⟶ ℝ ) |
44 |
|
ffn |
⊢ ( 𝐹 : 𝐼 ⟶ ℝ → 𝐹 Fn 𝐼 ) |
45 |
42 43 44
|
3syl |
⊢ ( 𝐹 ∈ 𝑋 → 𝐹 Fn 𝐼 ) |
46 |
45
|
3ad2ant2 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐹 Fn 𝐼 ) |
47 |
3
|
a1i |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 0 ∈ ℂ ) |
48 |
|
suppvalfn |
⊢ ( ( 𝐹 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ ℂ ) → ( 𝐹 supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 0 } ) |
49 |
46 34 47 48
|
syl3anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 0 } ) |
50 |
|
elrabi |
⊢ ( 𝐺 ∈ { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } → 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) |
51 |
50 1
|
eleq2s |
⊢ ( 𝐺 ∈ 𝑋 → 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) |
52 |
|
elmapi |
⊢ ( 𝐺 ∈ ( ℝ ↑m 𝐼 ) → 𝐺 : 𝐼 ⟶ ℝ ) |
53 |
|
ffn |
⊢ ( 𝐺 : 𝐼 ⟶ ℝ → 𝐺 Fn 𝐼 ) |
54 |
51 52 53
|
3syl |
⊢ ( 𝐺 ∈ 𝑋 → 𝐺 Fn 𝐼 ) |
55 |
54
|
3ad2ant3 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐺 Fn 𝐼 ) |
56 |
|
suppvalfn |
⊢ ( ( 𝐺 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ ℂ ) → ( 𝐺 supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( 𝐺 ‘ 𝑥 ) ≠ 0 } ) |
57 |
55 34 47 56
|
syl3anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐺 supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( 𝐺 ‘ 𝑥 ) ≠ 0 } ) |
58 |
49 57
|
uneq12d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) = ( { 𝑥 ∈ 𝐼 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 0 } ∪ { 𝑥 ∈ 𝐼 ∣ ( 𝐺 ‘ 𝑥 ) ≠ 0 } ) ) |
59 |
33 40 58
|
3sstr4d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) |