Step |
Hyp |
Ref |
Expression |
1 |
|
rrxval.r |
⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) |
2 |
|
rrxbase.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
3 |
|
recrng |
⊢ ℝfld ∈ *-Ring |
4 |
|
srngring |
⊢ ( ℝfld ∈ *-Ring → ℝfld ∈ Ring ) |
5 |
3 4
|
ax-mp |
⊢ ℝfld ∈ Ring |
6 |
|
eqid |
⊢ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 ) |
7 |
6
|
frlmlmod |
⊢ ( ( ℝfld ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( ℝfld freeLMod 𝐼 ) ∈ LMod ) |
8 |
5 7
|
mpan |
⊢ ( 𝐼 ∈ 𝑉 → ( ℝfld freeLMod 𝐼 ) ∈ LMod ) |
9 |
|
lmodgrp |
⊢ ( ( ℝfld freeLMod 𝐼 ) ∈ LMod → ( ℝfld freeLMod 𝐼 ) ∈ Grp ) |
10 |
|
eqid |
⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) |
11 |
|
eqid |
⊢ ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
12 |
|
eqid |
⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) |
13 |
|
eqid |
⊢ ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) |
14 |
10 11 12 13
|
tchnmfval |
⊢ ( ( ℝfld freeLMod 𝐼 ) ∈ Grp → ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) ) ) ) |
15 |
8 9 14
|
3syl |
⊢ ( 𝐼 ∈ 𝑉 → ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) ) ) ) |
16 |
1
|
rrxval |
⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
17 |
16
|
fveq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( norm ‘ 𝐻 ) = ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
18 |
16
|
fveq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝐻 ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
19 |
10 12
|
tcphbas |
⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
20 |
18 2 19
|
3eqtr4g |
⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
21 |
1 2
|
rrxbase |
⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } ) |
22 |
|
ssrab2 |
⊢ { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } ⊆ ( ℝ ↑m 𝐼 ) |
23 |
21 22
|
eqsstrdi |
⊢ ( 𝐼 ∈ 𝑉 → 𝐵 ⊆ ( ℝ ↑m 𝐼 ) ) |
24 |
23
|
sselda |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ) → 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) |
25 |
16
|
fveq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( ·𝑖 ‘ 𝐻 ) = ( ·𝑖 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
26 |
1 2
|
rrxip |
⊢ ( 𝐼 ∈ 𝑉 → ( ℎ ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ·𝑖 ‘ 𝐻 ) ) |
27 |
10 13
|
tcphip |
⊢ ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑖 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
28 |
27
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑖 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
29 |
25 26 28
|
3eqtr4rd |
⊢ ( 𝐼 ∈ 𝑉 → ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ℎ ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) → ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ℎ ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
31 |
|
simprl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) → ℎ = 𝑓 ) |
32 |
31
|
fveq1d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) → ( ℎ ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
33 |
|
simprr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) → 𝑔 = 𝑓 ) |
34 |
33
|
fveq1d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) → ( 𝑔 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
35 |
32 34
|
oveq12d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) → ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
37 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) → 𝑓 : 𝐼 ⟶ ℝ ) |
38 |
37
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) → 𝑓 : 𝐼 ⟶ ℝ ) |
39 |
38
|
ffvelrnda |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
40 |
39
|
recnd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℂ ) |
41 |
40
|
adantlr |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℂ ) |
42 |
41
|
sqvald |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
43 |
36 42
|
eqtr4d |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) |
44 |
43
|
mpteq2dva |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) |
45 |
44
|
oveq2d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) → ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) = ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) ) |
46 |
|
simpr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) → 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) |
47 |
|
ovexd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) → ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) ∈ V ) |
48 |
30 45 46 46 47
|
ovmpod |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) → ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) ) |
49 |
24 48
|
syldan |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ) → ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) ) |
50 |
49
|
eqcomd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ) → ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) = ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) ) |
51 |
50
|
fveq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ) → ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) ) = ( √ ‘ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) ) ) |
52 |
20 51
|
mpteq12dva |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) ) ) = ( 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) ) ) ) |
53 |
15 17 52
|
3eqtr4rd |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) ) ) = ( norm ‘ 𝐻 ) ) |