| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxval.r |
⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) |
| 2 |
|
rrxbase.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
| 3 |
|
rrxplusgvscavalb.r |
⊢ ∙ = ( ·𝑠 ‘ 𝐻 ) |
| 4 |
|
rrxplusgvscavalb.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 5 |
|
rrxplusgvscavalb.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 6 |
|
rrxplusgvscavalb.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 7 |
|
rrxplusgvscavalb.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 8 |
|
rrxplusgvscavalb.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
| 9 |
|
rrxplusgvscavalb.p |
⊢ ✚ = ( +g ‘ 𝐻 ) |
| 10 |
|
rrxplusgvscavalb.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 11 |
1
|
rrxval |
⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝜑 → ( +g ‘ 𝐻 ) = ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 14 |
9 13
|
eqtrid |
⊢ ( 𝜑 → ✚ = ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 15 |
12
|
fveq2d |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝐻 ) = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 16 |
3 15
|
eqtrid |
⊢ ( 𝜑 → ∙ = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 17 |
16
|
oveqd |
⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) = ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ) |
| 18 |
16
|
oveqd |
⊢ ( 𝜑 → ( 𝐶 ∙ 𝑌 ) = ( 𝐶 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑌 ) ) |
| 19 |
14 17 18
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝐴 ∙ 𝑋 ) ✚ ( 𝐶 ∙ 𝑌 ) ) = ( ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ( 𝐶 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑌 ) ) ) |
| 20 |
19
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑍 = ( ( 𝐴 ∙ 𝑋 ) ✚ ( 𝐶 ∙ 𝑌 ) ) ↔ 𝑍 = ( ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ( 𝐶 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑌 ) ) ) ) |
| 21 |
|
eqid |
⊢ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 ) |
| 22 |
|
eqid |
⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 23 |
12
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐻 ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 24 |
|
eqid |
⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 25 |
24 22
|
tcphbas |
⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 26 |
23 2 25
|
3eqtr4g |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 27 |
6 26
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 28 |
8 26
|
eleqtrd |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 29 |
|
resrng |
⊢ ℝfld ∈ *-Ring |
| 30 |
|
srngring |
⊢ ( ℝfld ∈ *-Ring → ℝfld ∈ Ring ) |
| 31 |
29 30
|
mp1i |
⊢ ( 𝜑 → ℝfld ∈ Ring ) |
| 32 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
| 33 |
|
eqid |
⊢ ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 34 |
24 33
|
tcphvsca |
⊢ ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 35 |
34
|
eqcomi |
⊢ ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 36 |
|
remulr |
⊢ · = ( .r ‘ ℝfld ) |
| 37 |
7 26
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 38 |
|
replusg |
⊢ + = ( +g ‘ ℝfld ) |
| 39 |
|
eqid |
⊢ ( +g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( +g ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 40 |
24 39
|
tchplusg |
⊢ ( +g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 41 |
40
|
eqcomi |
⊢ ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( +g ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 42 |
21 22 4 27 28 31 32 5 35 36 37 38 41 10
|
frlmvplusgscavalb |
⊢ ( 𝜑 → ( 𝑍 = ( ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ( 𝐶 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑌 ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝐴 · ( 𝑋 ‘ 𝑖 ) ) + ( 𝐶 · ( 𝑌 ‘ 𝑖 ) ) ) ) ) |
| 43 |
20 42
|
bitrd |
⊢ ( 𝜑 → ( 𝑍 = ( ( 𝐴 ∙ 𝑋 ) ✚ ( 𝐶 ∙ 𝑌 ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝐴 · ( 𝑋 ‘ 𝑖 ) ) + ( 𝐶 · ( 𝑌 ‘ 𝑖 ) ) ) ) ) |