Step |
Hyp |
Ref |
Expression |
1 |
|
rrxval.r |
⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) |
2 |
|
rrxbase.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
3 |
|
rrxplusgvscavalb.r |
⊢ ∙ = ( ·𝑠 ‘ 𝐻 ) |
4 |
|
rrxplusgvscavalb.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
5 |
|
rrxplusgvscavalb.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
6 |
|
rrxplusgvscavalb.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
rrxplusgvscavalb.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
8 |
|
rrxplusgvscavalb.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
9 |
|
rrxplusgvscavalb.p |
⊢ ✚ = ( +g ‘ 𝐻 ) |
10 |
|
rrxplusgvscavalb.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
11 |
1
|
rrxval |
⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝜑 → ( +g ‘ 𝐻 ) = ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
14 |
9 13
|
eqtrid |
⊢ ( 𝜑 → ✚ = ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
15 |
12
|
fveq2d |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝐻 ) = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
16 |
3 15
|
eqtrid |
⊢ ( 𝜑 → ∙ = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
17 |
16
|
oveqd |
⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) = ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ) |
18 |
16
|
oveqd |
⊢ ( 𝜑 → ( 𝐶 ∙ 𝑌 ) = ( 𝐶 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑌 ) ) |
19 |
14 17 18
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝐴 ∙ 𝑋 ) ✚ ( 𝐶 ∙ 𝑌 ) ) = ( ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ( 𝐶 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑌 ) ) ) |
20 |
19
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑍 = ( ( 𝐴 ∙ 𝑋 ) ✚ ( 𝐶 ∙ 𝑌 ) ) ↔ 𝑍 = ( ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ( 𝐶 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑌 ) ) ) ) |
21 |
|
eqid |
⊢ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 ) |
22 |
|
eqid |
⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) |
23 |
12
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐻 ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
24 |
|
eqid |
⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) |
25 |
24 22
|
tcphbas |
⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
26 |
23 2 25
|
3eqtr4g |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
27 |
6 26
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
28 |
8 26
|
eleqtrd |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
29 |
|
recrng |
⊢ ℝfld ∈ *-Ring |
30 |
|
srngring |
⊢ ( ℝfld ∈ *-Ring → ℝfld ∈ Ring ) |
31 |
29 30
|
mp1i |
⊢ ( 𝜑 → ℝfld ∈ Ring ) |
32 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
33 |
|
eqid |
⊢ ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) |
34 |
24 33
|
tcphvsca |
⊢ ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
35 |
34
|
eqcomi |
⊢ ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) |
36 |
|
remulr |
⊢ · = ( .r ‘ ℝfld ) |
37 |
7 26
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
38 |
|
replusg |
⊢ + = ( +g ‘ ℝfld ) |
39 |
|
eqid |
⊢ ( +g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( +g ‘ ( ℝfld freeLMod 𝐼 ) ) |
40 |
24 39
|
tchplusg |
⊢ ( +g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
41 |
40
|
eqcomi |
⊢ ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( +g ‘ ( ℝfld freeLMod 𝐼 ) ) |
42 |
21 22 4 27 28 31 32 5 35 36 37 38 41 10
|
frlmvplusgscavalb |
⊢ ( 𝜑 → ( 𝑍 = ( ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ( 𝐶 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑌 ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝐴 · ( 𝑋 ‘ 𝑖 ) ) + ( 𝐶 · ( 𝑌 ‘ 𝑖 ) ) ) ) ) |
43 |
20 42
|
bitrd |
⊢ ( 𝜑 → ( 𝑍 = ( ( 𝐴 ∙ 𝑋 ) ✚ ( 𝐶 ∙ 𝑌 ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝐴 · ( 𝑋 ‘ 𝑖 ) ) + ( 𝐶 · ( 𝑌 ‘ 𝑖 ) ) ) ) ) |