Metamath Proof Explorer


Theorem rrxprds

Description: Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses rrxval.r ⊒ 𝐻 = ( ℝ^ β€˜ 𝐼 )
rrxbase.b ⊒ 𝐡 = ( Base β€˜ 𝐻 )
Assertion rrxprds ( 𝐼 ∈ 𝑉 β†’ 𝐻 = ( toβ„‚PreHil β€˜ ( ( ℝfld Xs ( 𝐼 Γ— { ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ ) } ) ) β†Ύs 𝐡 ) ) )

Proof

Step Hyp Ref Expression
1 rrxval.r ⊒ 𝐻 = ( ℝ^ β€˜ 𝐼 )
2 rrxbase.b ⊒ 𝐡 = ( Base β€˜ 𝐻 )
3 1 rrxval ⊒ ( 𝐼 ∈ 𝑉 β†’ 𝐻 = ( toβ„‚PreHil β€˜ ( ℝfld freeLMod 𝐼 ) ) )
4 refld ⊒ ℝfld ∈ Field
5 eqid ⊒ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 )
6 eqid ⊒ ( Base β€˜ ( ℝfld freeLMod 𝐼 ) ) = ( Base β€˜ ( ℝfld freeLMod 𝐼 ) )
7 5 6 frlmpws ⊒ ( ( ℝfld ∈ Field ∧ 𝐼 ∈ 𝑉 ) β†’ ( ℝfld freeLMod 𝐼 ) = ( ( ( ringLMod β€˜ ℝfld ) ↑s 𝐼 ) β†Ύs ( Base β€˜ ( ℝfld freeLMod 𝐼 ) ) ) )
8 4 7 mpan ⊒ ( 𝐼 ∈ 𝑉 β†’ ( ℝfld freeLMod 𝐼 ) = ( ( ( ringLMod β€˜ ℝfld ) ↑s 𝐼 ) β†Ύs ( Base β€˜ ( ℝfld freeLMod 𝐼 ) ) ) )
9 fvex ⊒ ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ ) ∈ V
10 rlmval ⊒ ( ringLMod β€˜ ℝfld ) = ( ( subringAlg β€˜ ℝfld ) β€˜ ( Base β€˜ ℝfld ) )
11 rebase ⊒ ℝ = ( Base β€˜ ℝfld )
12 11 fveq2i ⊒ ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ ) = ( ( subringAlg β€˜ ℝfld ) β€˜ ( Base β€˜ ℝfld ) )
13 10 12 eqtr4i ⊒ ( ringLMod β€˜ ℝfld ) = ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ )
14 13 oveq1i ⊒ ( ( ringLMod β€˜ ℝfld ) ↑s 𝐼 ) = ( ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ ) ↑s 𝐼 )
15 11 ressid ⊒ ( ℝfld ∈ Field β†’ ( ℝfld β†Ύs ℝ ) = ℝfld )
16 4 15 ax-mp ⊒ ( ℝfld β†Ύs ℝ ) = ℝfld
17 eqidd ⊒ ( ⊀ β†’ ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ ) = ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ ) )
18 11 eqimssi ⊒ ℝ βŠ† ( Base β€˜ ℝfld )
19 18 a1i ⊒ ( ⊀ β†’ ℝ βŠ† ( Base β€˜ ℝfld ) )
20 17 19 srasca ⊒ ( ⊀ β†’ ( ℝfld β†Ύs ℝ ) = ( Scalar β€˜ ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ ) ) )
21 20 mptru ⊒ ( ℝfld β†Ύs ℝ ) = ( Scalar β€˜ ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ ) )
22 16 21 eqtr3i ⊒ ℝfld = ( Scalar β€˜ ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ ) )
23 14 22 pwsval ⊒ ( ( ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ ) ∈ V ∧ 𝐼 ∈ 𝑉 ) β†’ ( ( ringLMod β€˜ ℝfld ) ↑s 𝐼 ) = ( ℝfld Xs ( 𝐼 Γ— { ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ ) } ) ) )
24 9 23 mpan ⊒ ( 𝐼 ∈ 𝑉 β†’ ( ( ringLMod β€˜ ℝfld ) ↑s 𝐼 ) = ( ℝfld Xs ( 𝐼 Γ— { ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ ) } ) ) )
25 24 eqcomd ⊒ ( 𝐼 ∈ 𝑉 β†’ ( ℝfld Xs ( 𝐼 Γ— { ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ ) } ) ) = ( ( ringLMod β€˜ ℝfld ) ↑s 𝐼 ) )
26 3 fveq2d ⊒ ( 𝐼 ∈ 𝑉 β†’ ( Base β€˜ 𝐻 ) = ( Base β€˜ ( toβ„‚PreHil β€˜ ( ℝfld freeLMod 𝐼 ) ) ) )
27 eqid ⊒ ( toβ„‚PreHil β€˜ ( ℝfld freeLMod 𝐼 ) ) = ( toβ„‚PreHil β€˜ ( ℝfld freeLMod 𝐼 ) )
28 27 6 tcphbas ⊒ ( Base β€˜ ( ℝfld freeLMod 𝐼 ) ) = ( Base β€˜ ( toβ„‚PreHil β€˜ ( ℝfld freeLMod 𝐼 ) ) )
29 26 2 28 3eqtr4g ⊒ ( 𝐼 ∈ 𝑉 β†’ 𝐡 = ( Base β€˜ ( ℝfld freeLMod 𝐼 ) ) )
30 25 29 oveq12d ⊒ ( 𝐼 ∈ 𝑉 β†’ ( ( ℝfld Xs ( 𝐼 Γ— { ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ ) } ) ) β†Ύs 𝐡 ) = ( ( ( ringLMod β€˜ ℝfld ) ↑s 𝐼 ) β†Ύs ( Base β€˜ ( ℝfld freeLMod 𝐼 ) ) ) )
31 8 30 eqtr4d ⊒ ( 𝐼 ∈ 𝑉 β†’ ( ℝfld freeLMod 𝐼 ) = ( ( ℝfld Xs ( 𝐼 Γ— { ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ ) } ) ) β†Ύs 𝐡 ) )
32 31 fveq2d ⊒ ( 𝐼 ∈ 𝑉 β†’ ( toβ„‚PreHil β€˜ ( ℝfld freeLMod 𝐼 ) ) = ( toβ„‚PreHil β€˜ ( ( ℝfld Xs ( 𝐼 Γ— { ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ ) } ) ) β†Ύs 𝐡 ) ) )
33 3 32 eqtrd ⊒ ( 𝐼 ∈ 𝑉 β†’ 𝐻 = ( toβ„‚PreHil β€˜ ( ( ℝfld Xs ( 𝐼 Γ— { ( ( subringAlg β€˜ ℝfld ) β€˜ ℝ ) } ) ) β†Ύs 𝐡 ) ) )