Metamath Proof Explorer


Theorem rrxprds

Description: Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses rrxval.r 𝐻 = ( ℝ^ ‘ 𝐼 )
rrxbase.b 𝐵 = ( Base ‘ 𝐻 )
Assertion rrxprds ( 𝐼𝑉𝐻 = ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 rrxval.r 𝐻 = ( ℝ^ ‘ 𝐼 )
2 rrxbase.b 𝐵 = ( Base ‘ 𝐻 )
3 1 rrxval ( 𝐼𝑉𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) )
4 refld fld ∈ Field
5 eqid ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 )
6 eqid ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) )
7 5 6 frlmpws ( ( ℝfld ∈ Field ∧ 𝐼𝑉 ) → ( ℝfld freeLMod 𝐼 ) = ( ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) ↾s ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) )
8 4 7 mpan ( 𝐼𝑉 → ( ℝfld freeLMod 𝐼 ) = ( ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) ↾s ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) )
9 fvex ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ∈ V
10 rlmval ( ringLMod ‘ ℝfld ) = ( ( subringAlg ‘ ℝfld ) ‘ ( Base ‘ ℝfld ) )
11 rebase ℝ = ( Base ‘ ℝfld )
12 11 fveq2i ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) = ( ( subringAlg ‘ ℝfld ) ‘ ( Base ‘ ℝfld ) )
13 10 12 eqtr4i ( ringLMod ‘ ℝfld ) = ( ( subringAlg ‘ ℝfld ) ‘ ℝ )
14 13 oveq1i ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) = ( ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ↑s 𝐼 )
15 11 ressid ( ℝfld ∈ Field → ( ℝflds ℝ ) = ℝfld )
16 4 15 ax-mp ( ℝflds ℝ ) = ℝfld
17 eqidd ( ⊤ → ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) = ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) )
18 11 eqimssi ℝ ⊆ ( Base ‘ ℝfld )
19 18 a1i ( ⊤ → ℝ ⊆ ( Base ‘ ℝfld ) )
20 17 19 srasca ( ⊤ → ( ℝflds ℝ ) = ( Scalar ‘ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ) )
21 20 mptru ( ℝflds ℝ ) = ( Scalar ‘ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) )
22 16 21 eqtr3i fld = ( Scalar ‘ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) )
23 14 22 pwsval ( ( ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ∈ V ∧ 𝐼𝑉 ) → ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) = ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) )
24 9 23 mpan ( 𝐼𝑉 → ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) = ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) )
25 24 eqcomd ( 𝐼𝑉 → ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) = ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) )
26 3 fveq2d ( 𝐼𝑉 → ( Base ‘ 𝐻 ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) )
27 eqid ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) )
28 27 6 tcphbas ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) )
29 26 2 28 3eqtr4g ( 𝐼𝑉𝐵 = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) )
30 25 29 oveq12d ( 𝐼𝑉 → ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) = ( ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) ↾s ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) )
31 8 30 eqtr4d ( 𝐼𝑉 → ( ℝfld freeLMod 𝐼 ) = ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) )
32 31 fveq2d ( 𝐼𝑉 → ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) )
33 3 32 eqtrd ( 𝐼𝑉𝐻 = ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) )