| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rrxval.r | 
							⊢ 𝐻  =  ( ℝ^ ‘ 𝐼 )  | 
						
						
							| 2 | 
							
								
							 | 
							rrxbase.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐻 )  | 
						
						
							| 3 | 
							
								1
							 | 
							rrxval | 
							⊢ ( 𝐼  ∈  𝑉  →  𝐻  =  ( toℂPreHil ‘ ( ℝfld  freeLMod  𝐼 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							refld | 
							⊢ ℝfld  ∈  Field  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( ℝfld  freeLMod  𝐼 )  =  ( ℝfld  freeLMod  𝐼 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( ℝfld  freeLMod  𝐼 ) )  =  ( Base ‘ ( ℝfld  freeLMod  𝐼 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							frlmpws | 
							⊢ ( ( ℝfld  ∈  Field  ∧  𝐼  ∈  𝑉 )  →  ( ℝfld  freeLMod  𝐼 )  =  ( ( ( ringLMod ‘ ℝfld )  ↑s  𝐼 )  ↾s  ( Base ‘ ( ℝfld  freeLMod  𝐼 ) ) ) )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							mpan | 
							⊢ ( 𝐼  ∈  𝑉  →  ( ℝfld  freeLMod  𝐼 )  =  ( ( ( ringLMod ‘ ℝfld )  ↑s  𝐼 )  ↾s  ( Base ‘ ( ℝfld  freeLMod  𝐼 ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fvex | 
							⊢ ( ( subringAlg  ‘ ℝfld ) ‘ ℝ )  ∈  V  | 
						
						
							| 10 | 
							
								
							 | 
							rlmval | 
							⊢ ( ringLMod ‘ ℝfld )  =  ( ( subringAlg  ‘ ℝfld ) ‘ ( Base ‘ ℝfld ) )  | 
						
						
							| 11 | 
							
								
							 | 
							rebase | 
							⊢ ℝ  =  ( Base ‘ ℝfld )  | 
						
						
							| 12 | 
							
								11
							 | 
							fveq2i | 
							⊢ ( ( subringAlg  ‘ ℝfld ) ‘ ℝ )  =  ( ( subringAlg  ‘ ℝfld ) ‘ ( Base ‘ ℝfld ) )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							eqtr4i | 
							⊢ ( ringLMod ‘ ℝfld )  =  ( ( subringAlg  ‘ ℝfld ) ‘ ℝ )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq1i | 
							⊢ ( ( ringLMod ‘ ℝfld )  ↑s  𝐼 )  =  ( ( ( subringAlg  ‘ ℝfld ) ‘ ℝ )  ↑s  𝐼 )  | 
						
						
							| 15 | 
							
								11
							 | 
							ressid | 
							⊢ ( ℝfld  ∈  Field  →  ( ℝfld  ↾s  ℝ )  =  ℝfld )  | 
						
						
							| 16 | 
							
								4 15
							 | 
							ax-mp | 
							⊢ ( ℝfld  ↾s  ℝ )  =  ℝfld  | 
						
						
							| 17 | 
							
								
							 | 
							eqidd | 
							⊢ ( ⊤  →  ( ( subringAlg  ‘ ℝfld ) ‘ ℝ )  =  ( ( subringAlg  ‘ ℝfld ) ‘ ℝ ) )  | 
						
						
							| 18 | 
							
								11
							 | 
							eqimssi | 
							⊢ ℝ  ⊆  ( Base ‘ ℝfld )  | 
						
						
							| 19 | 
							
								18
							 | 
							a1i | 
							⊢ ( ⊤  →  ℝ  ⊆  ( Base ‘ ℝfld ) )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							srasca | 
							⊢ ( ⊤  →  ( ℝfld  ↾s  ℝ )  =  ( Scalar ‘ ( ( subringAlg  ‘ ℝfld ) ‘ ℝ ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							mptru | 
							⊢ ( ℝfld  ↾s  ℝ )  =  ( Scalar ‘ ( ( subringAlg  ‘ ℝfld ) ‘ ℝ ) )  | 
						
						
							| 22 | 
							
								16 21
							 | 
							eqtr3i | 
							⊢ ℝfld  =  ( Scalar ‘ ( ( subringAlg  ‘ ℝfld ) ‘ ℝ ) )  | 
						
						
							| 23 | 
							
								14 22
							 | 
							pwsval | 
							⊢ ( ( ( ( subringAlg  ‘ ℝfld ) ‘ ℝ )  ∈  V  ∧  𝐼  ∈  𝑉 )  →  ( ( ringLMod ‘ ℝfld )  ↑s  𝐼 )  =  ( ℝfld Xs ( 𝐼  ×  { ( ( subringAlg  ‘ ℝfld ) ‘ ℝ ) } ) ) )  | 
						
						
							| 24 | 
							
								9 23
							 | 
							mpan | 
							⊢ ( 𝐼  ∈  𝑉  →  ( ( ringLMod ‘ ℝfld )  ↑s  𝐼 )  =  ( ℝfld Xs ( 𝐼  ×  { ( ( subringAlg  ‘ ℝfld ) ‘ ℝ ) } ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							eqcomd | 
							⊢ ( 𝐼  ∈  𝑉  →  ( ℝfld Xs ( 𝐼  ×  { ( ( subringAlg  ‘ ℝfld ) ‘ ℝ ) } ) )  =  ( ( ringLMod ‘ ℝfld )  ↑s  𝐼 ) )  | 
						
						
							| 26 | 
							
								3
							 | 
							fveq2d | 
							⊢ ( 𝐼  ∈  𝑉  →  ( Base ‘ 𝐻 )  =  ( Base ‘ ( toℂPreHil ‘ ( ℝfld  freeLMod  𝐼 ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							eqid | 
							⊢ ( toℂPreHil ‘ ( ℝfld  freeLMod  𝐼 ) )  =  ( toℂPreHil ‘ ( ℝfld  freeLMod  𝐼 ) )  | 
						
						
							| 28 | 
							
								27 6
							 | 
							tcphbas | 
							⊢ ( Base ‘ ( ℝfld  freeLMod  𝐼 ) )  =  ( Base ‘ ( toℂPreHil ‘ ( ℝfld  freeLMod  𝐼 ) ) )  | 
						
						
							| 29 | 
							
								26 2 28
							 | 
							3eqtr4g | 
							⊢ ( 𝐼  ∈  𝑉  →  𝐵  =  ( Base ‘ ( ℝfld  freeLMod  𝐼 ) ) )  | 
						
						
							| 30 | 
							
								25 29
							 | 
							oveq12d | 
							⊢ ( 𝐼  ∈  𝑉  →  ( ( ℝfld Xs ( 𝐼  ×  { ( ( subringAlg  ‘ ℝfld ) ‘ ℝ ) } ) )  ↾s  𝐵 )  =  ( ( ( ringLMod ‘ ℝfld )  ↑s  𝐼 )  ↾s  ( Base ‘ ( ℝfld  freeLMod  𝐼 ) ) ) )  | 
						
						
							| 31 | 
							
								8 30
							 | 
							eqtr4d | 
							⊢ ( 𝐼  ∈  𝑉  →  ( ℝfld  freeLMod  𝐼 )  =  ( ( ℝfld Xs ( 𝐼  ×  { ( ( subringAlg  ‘ ℝfld ) ‘ ℝ ) } ) )  ↾s  𝐵 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							fveq2d | 
							⊢ ( 𝐼  ∈  𝑉  →  ( toℂPreHil ‘ ( ℝfld  freeLMod  𝐼 ) )  =  ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼  ×  { ( ( subringAlg  ‘ ℝfld ) ‘ ℝ ) } ) )  ↾s  𝐵 ) ) )  | 
						
						
							| 33 | 
							
								3 32
							 | 
							eqtrd | 
							⊢ ( 𝐼  ∈  𝑉  →  𝐻  =  ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼  ×  { ( ( subringAlg  ‘ ℝfld ) ‘ ℝ ) } ) )  ↾s  𝐵 ) ) )  |