| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxval.r |
⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) |
| 2 |
|
rrxbase.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
| 3 |
1
|
rrxval |
⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 4 |
|
refld |
⊢ ℝfld ∈ Field |
| 5 |
|
eqid |
⊢ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 7 |
5 6
|
frlmpws |
⊢ ( ( ℝfld ∈ Field ∧ 𝐼 ∈ 𝑉 ) → ( ℝfld freeLMod 𝐼 ) = ( ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) ↾s ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 8 |
4 7
|
mpan |
⊢ ( 𝐼 ∈ 𝑉 → ( ℝfld freeLMod 𝐼 ) = ( ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) ↾s ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 9 |
|
fvex |
⊢ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ∈ V |
| 10 |
|
rlmval |
⊢ ( ringLMod ‘ ℝfld ) = ( ( subringAlg ‘ ℝfld ) ‘ ( Base ‘ ℝfld ) ) |
| 11 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
| 12 |
11
|
fveq2i |
⊢ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) = ( ( subringAlg ‘ ℝfld ) ‘ ( Base ‘ ℝfld ) ) |
| 13 |
10 12
|
eqtr4i |
⊢ ( ringLMod ‘ ℝfld ) = ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) |
| 14 |
13
|
oveq1i |
⊢ ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) = ( ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ↑s 𝐼 ) |
| 15 |
11
|
ressid |
⊢ ( ℝfld ∈ Field → ( ℝfld ↾s ℝ ) = ℝfld ) |
| 16 |
4 15
|
ax-mp |
⊢ ( ℝfld ↾s ℝ ) = ℝfld |
| 17 |
|
eqidd |
⊢ ( ⊤ → ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) = ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ) |
| 18 |
11
|
eqimssi |
⊢ ℝ ⊆ ( Base ‘ ℝfld ) |
| 19 |
18
|
a1i |
⊢ ( ⊤ → ℝ ⊆ ( Base ‘ ℝfld ) ) |
| 20 |
17 19
|
srasca |
⊢ ( ⊤ → ( ℝfld ↾s ℝ ) = ( Scalar ‘ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ) ) |
| 21 |
20
|
mptru |
⊢ ( ℝfld ↾s ℝ ) = ( Scalar ‘ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ) |
| 22 |
16 21
|
eqtr3i |
⊢ ℝfld = ( Scalar ‘ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ) |
| 23 |
14 22
|
pwsval |
⊢ ( ( ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ∈ V ∧ 𝐼 ∈ 𝑉 ) → ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) = ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) |
| 24 |
9 23
|
mpan |
⊢ ( 𝐼 ∈ 𝑉 → ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) = ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) |
| 25 |
24
|
eqcomd |
⊢ ( 𝐼 ∈ 𝑉 → ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) = ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) ) |
| 26 |
3
|
fveq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝐻 ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 27 |
|
eqid |
⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 28 |
27 6
|
tcphbas |
⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 29 |
26 2 28
|
3eqtr4g |
⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 30 |
25 29
|
oveq12d |
⊢ ( 𝐼 ∈ 𝑉 → ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) = ( ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) ↾s ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 31 |
8 30
|
eqtr4d |
⊢ ( 𝐼 ∈ 𝑉 → ( ℝfld freeLMod 𝐼 ) = ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) |
| 32 |
31
|
fveq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) ) |
| 33 |
3 32
|
eqtrd |
⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) ) |