Step |
Hyp |
Ref |
Expression |
1 |
|
rrxval.r |
β’ π» = ( β^ β πΌ ) |
2 |
|
rrxbase.b |
β’ π΅ = ( Base β π» ) |
3 |
1
|
rrxval |
β’ ( πΌ β π β π» = ( toβPreHil β ( βfld freeLMod πΌ ) ) ) |
4 |
|
refld |
β’ βfld β Field |
5 |
|
eqid |
β’ ( βfld freeLMod πΌ ) = ( βfld freeLMod πΌ ) |
6 |
|
eqid |
β’ ( Base β ( βfld freeLMod πΌ ) ) = ( Base β ( βfld freeLMod πΌ ) ) |
7 |
5 6
|
frlmpws |
β’ ( ( βfld β Field β§ πΌ β π ) β ( βfld freeLMod πΌ ) = ( ( ( ringLMod β βfld ) βs πΌ ) βΎs ( Base β ( βfld freeLMod πΌ ) ) ) ) |
8 |
4 7
|
mpan |
β’ ( πΌ β π β ( βfld freeLMod πΌ ) = ( ( ( ringLMod β βfld ) βs πΌ ) βΎs ( Base β ( βfld freeLMod πΌ ) ) ) ) |
9 |
|
fvex |
β’ ( ( subringAlg β βfld ) β β ) β V |
10 |
|
rlmval |
β’ ( ringLMod β βfld ) = ( ( subringAlg β βfld ) β ( Base β βfld ) ) |
11 |
|
rebase |
β’ β = ( Base β βfld ) |
12 |
11
|
fveq2i |
β’ ( ( subringAlg β βfld ) β β ) = ( ( subringAlg β βfld ) β ( Base β βfld ) ) |
13 |
10 12
|
eqtr4i |
β’ ( ringLMod β βfld ) = ( ( subringAlg β βfld ) β β ) |
14 |
13
|
oveq1i |
β’ ( ( ringLMod β βfld ) βs πΌ ) = ( ( ( subringAlg β βfld ) β β ) βs πΌ ) |
15 |
11
|
ressid |
β’ ( βfld β Field β ( βfld βΎs β ) = βfld ) |
16 |
4 15
|
ax-mp |
β’ ( βfld βΎs β ) = βfld |
17 |
|
eqidd |
β’ ( β€ β ( ( subringAlg β βfld ) β β ) = ( ( subringAlg β βfld ) β β ) ) |
18 |
11
|
eqimssi |
β’ β β ( Base β βfld ) |
19 |
18
|
a1i |
β’ ( β€ β β β ( Base β βfld ) ) |
20 |
17 19
|
srasca |
β’ ( β€ β ( βfld βΎs β ) = ( Scalar β ( ( subringAlg β βfld ) β β ) ) ) |
21 |
20
|
mptru |
β’ ( βfld βΎs β ) = ( Scalar β ( ( subringAlg β βfld ) β β ) ) |
22 |
16 21
|
eqtr3i |
β’ βfld = ( Scalar β ( ( subringAlg β βfld ) β β ) ) |
23 |
14 22
|
pwsval |
β’ ( ( ( ( subringAlg β βfld ) β β ) β V β§ πΌ β π ) β ( ( ringLMod β βfld ) βs πΌ ) = ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) ) |
24 |
9 23
|
mpan |
β’ ( πΌ β π β ( ( ringLMod β βfld ) βs πΌ ) = ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) ) |
25 |
24
|
eqcomd |
β’ ( πΌ β π β ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) = ( ( ringLMod β βfld ) βs πΌ ) ) |
26 |
3
|
fveq2d |
β’ ( πΌ β π β ( Base β π» ) = ( Base β ( toβPreHil β ( βfld freeLMod πΌ ) ) ) ) |
27 |
|
eqid |
β’ ( toβPreHil β ( βfld freeLMod πΌ ) ) = ( toβPreHil β ( βfld freeLMod πΌ ) ) |
28 |
27 6
|
tcphbas |
β’ ( Base β ( βfld freeLMod πΌ ) ) = ( Base β ( toβPreHil β ( βfld freeLMod πΌ ) ) ) |
29 |
26 2 28
|
3eqtr4g |
β’ ( πΌ β π β π΅ = ( Base β ( βfld freeLMod πΌ ) ) ) |
30 |
25 29
|
oveq12d |
β’ ( πΌ β π β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs π΅ ) = ( ( ( ringLMod β βfld ) βs πΌ ) βΎs ( Base β ( βfld freeLMod πΌ ) ) ) ) |
31 |
8 30
|
eqtr4d |
β’ ( πΌ β π β ( βfld freeLMod πΌ ) = ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs π΅ ) ) |
32 |
31
|
fveq2d |
β’ ( πΌ β π β ( toβPreHil β ( βfld freeLMod πΌ ) ) = ( toβPreHil β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs π΅ ) ) ) |
33 |
3 32
|
eqtrd |
β’ ( πΌ β π β π» = ( toβPreHil β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs π΅ ) ) ) |