| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxspheres.e |
⊢ 𝐸 = ( ℝ^ ‘ 𝐼 ) |
| 2 |
|
rrxspheres.p |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
| 3 |
|
rrxspheres.d |
⊢ 𝐷 = ( dist ‘ 𝐸 ) |
| 4 |
|
rrxspheres.s |
⊢ 𝑆 = ( Sphere ‘ 𝐸 ) |
| 5 |
1
|
fvexi |
⊢ 𝐸 ∈ V |
| 6 |
|
id |
⊢ ( 𝐼 ∈ Fin → 𝐼 ∈ Fin ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 8 |
6 1 7
|
rrxbasefi |
⊢ ( 𝐼 ∈ Fin → ( Base ‘ 𝐸 ) = ( ℝ ↑m 𝐼 ) ) |
| 9 |
2 8
|
eqtr4id |
⊢ ( 𝐼 ∈ Fin → 𝑃 = ( Base ‘ 𝐸 ) ) |
| 10 |
9
|
eleq2d |
⊢ ( 𝐼 ∈ Fin → ( 𝑀 ∈ 𝑃 ↔ 𝑀 ∈ ( Base ‘ 𝐸 ) ) ) |
| 11 |
10
|
biimpa |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ) → 𝑀 ∈ ( Base ‘ 𝐸 ) ) |
| 12 |
11
|
3adant3 |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) → 𝑀 ∈ ( Base ‘ 𝐸 ) ) |
| 13 |
12
|
adantl |
⊢ ( ( 0 ≤ 𝑅 ∧ ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ) → 𝑀 ∈ ( Base ‘ 𝐸 ) ) |
| 14 |
|
rexr |
⊢ ( 𝑅 ∈ ℝ → 𝑅 ∈ ℝ* ) |
| 15 |
14
|
3ad2ant3 |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) → 𝑅 ∈ ℝ* ) |
| 16 |
15
|
anim2i |
⊢ ( ( 0 ≤ 𝑅 ∧ ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ) → ( 0 ≤ 𝑅 ∧ 𝑅 ∈ ℝ* ) ) |
| 17 |
16
|
ancomd |
⊢ ( ( 0 ≤ 𝑅 ∧ ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ) → ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ) ) |
| 18 |
|
elxrge0 |
⊢ ( 𝑅 ∈ ( 0 [,] +∞ ) ↔ ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ) ) |
| 19 |
17 18
|
sylibr |
⊢ ( ( 0 ≤ 𝑅 ∧ ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ) → 𝑅 ∈ ( 0 [,] +∞ ) ) |
| 20 |
7 4 3
|
sphere |
⊢ ( ( 𝐸 ∈ V ∧ 𝑀 ∈ ( Base ‘ 𝐸 ) ∧ 𝑅 ∈ ( 0 [,] +∞ ) ) → ( 𝑀 𝑆 𝑅 ) = { 𝑝 ∈ ( Base ‘ 𝐸 ) ∣ ( 𝑝 𝐷 𝑀 ) = 𝑅 } ) |
| 21 |
5 13 19 20
|
mp3an2i |
⊢ ( ( 0 ≤ 𝑅 ∧ ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ) → ( 𝑀 𝑆 𝑅 ) = { 𝑝 ∈ ( Base ‘ 𝐸 ) ∣ ( 𝑝 𝐷 𝑀 ) = 𝑅 } ) |
| 22 |
|
simp1 |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) → 𝐼 ∈ Fin ) |
| 23 |
22 1 7
|
rrxbasefi |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) → ( Base ‘ 𝐸 ) = ( ℝ ↑m 𝐼 ) ) |
| 24 |
23 2
|
eqtr4di |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) → ( Base ‘ 𝐸 ) = 𝑃 ) |
| 25 |
24
|
adantl |
⊢ ( ( 0 ≤ 𝑅 ∧ ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ) → ( Base ‘ 𝐸 ) = 𝑃 ) |
| 26 |
25
|
rabeqdv |
⊢ ( ( 0 ≤ 𝑅 ∧ ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ) → { 𝑝 ∈ ( Base ‘ 𝐸 ) ∣ ( 𝑝 𝐷 𝑀 ) = 𝑅 } = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 𝐷 𝑀 ) = 𝑅 } ) |
| 27 |
21 26
|
eqtrd |
⊢ ( ( 0 ≤ 𝑅 ∧ ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ) → ( 𝑀 𝑆 𝑅 ) = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 𝐷 𝑀 ) = 𝑅 } ) |
| 28 |
27
|
ex |
⊢ ( 0 ≤ 𝑅 → ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) → ( 𝑀 𝑆 𝑅 ) = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 𝐷 𝑀 ) = 𝑅 } ) ) |
| 29 |
7 4 3
|
spheres |
⊢ ( 𝐸 ∈ V → 𝑆 = ( 𝑥 ∈ ( Base ‘ 𝐸 ) , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝 ∈ ( Base ‘ 𝐸 ) ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } ) ) |
| 30 |
5 29
|
ax-mp |
⊢ 𝑆 = ( 𝑥 ∈ ( Base ‘ 𝐸 ) , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝 ∈ ( Base ‘ 𝐸 ) ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } ) |
| 31 |
|
fvex |
⊢ ( Base ‘ 𝐸 ) ∈ V |
| 32 |
31
|
rabex |
⊢ { 𝑝 ∈ ( Base ‘ 𝐸 ) ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } ∈ V |
| 33 |
30 32
|
dmmpo |
⊢ dom 𝑆 = ( ( Base ‘ 𝐸 ) × ( 0 [,] +∞ ) ) |
| 34 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 35 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 36 |
34 35
|
pm3.2i |
⊢ ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) |
| 37 |
|
elicc1 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑅 ∈ ( 0 [,] +∞ ) ↔ ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞ ) ) ) |
| 38 |
36 37
|
mp1i |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) → ( 𝑅 ∈ ( 0 [,] +∞ ) ↔ ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞ ) ) ) |
| 39 |
|
simp2 |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞ ) → 0 ≤ 𝑅 ) |
| 40 |
38 39
|
biimtrdi |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) → ( 𝑅 ∈ ( 0 [,] +∞ ) → 0 ≤ 𝑅 ) ) |
| 41 |
40
|
con3d |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) → ( ¬ 0 ≤ 𝑅 → ¬ 𝑅 ∈ ( 0 [,] +∞ ) ) ) |
| 42 |
41
|
imp |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ∧ ¬ 0 ≤ 𝑅 ) → ¬ 𝑅 ∈ ( 0 [,] +∞ ) ) |
| 43 |
42
|
intnand |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ∧ ¬ 0 ≤ 𝑅 ) → ¬ ( 𝑀 ∈ ( Base ‘ 𝐸 ) ∧ 𝑅 ∈ ( 0 [,] +∞ ) ) ) |
| 44 |
|
ndmovg |
⊢ ( ( dom 𝑆 = ( ( Base ‘ 𝐸 ) × ( 0 [,] +∞ ) ) ∧ ¬ ( 𝑀 ∈ ( Base ‘ 𝐸 ) ∧ 𝑅 ∈ ( 0 [,] +∞ ) ) ) → ( 𝑀 𝑆 𝑅 ) = ∅ ) |
| 45 |
33 43 44
|
sylancr |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ∧ ¬ 0 ≤ 𝑅 ) → ( 𝑀 𝑆 𝑅 ) = ∅ ) |
| 46 |
1
|
fveq2i |
⊢ ( dist ‘ 𝐸 ) = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) |
| 47 |
3 46
|
eqtri |
⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) |
| 48 |
47
|
rrxmetfi |
⊢ ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 49 |
48
|
3ad2ant1 |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 50 |
49
|
adantr |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ∧ 𝑝 ∈ 𝑃 ) → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 51 |
2
|
fveq2i |
⊢ ( Met ‘ 𝑃 ) = ( Met ‘ ( ℝ ↑m 𝐼 ) ) |
| 52 |
50 51
|
eleqtrrdi |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ∧ 𝑝 ∈ 𝑃 ) → 𝐷 ∈ ( Met ‘ 𝑃 ) ) |
| 53 |
|
simpr |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ∧ 𝑝 ∈ 𝑃 ) → 𝑝 ∈ 𝑃 ) |
| 54 |
|
simp2 |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) → 𝑀 ∈ 𝑃 ) |
| 55 |
54
|
adantr |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ∧ 𝑝 ∈ 𝑃 ) → 𝑀 ∈ 𝑃 ) |
| 56 |
|
metge0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑃 ) ∧ 𝑝 ∈ 𝑃 ∧ 𝑀 ∈ 𝑃 ) → 0 ≤ ( 𝑝 𝐷 𝑀 ) ) |
| 57 |
52 53 55 56
|
syl3anc |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ∧ 𝑝 ∈ 𝑃 ) → 0 ≤ ( 𝑝 𝐷 𝑀 ) ) |
| 58 |
|
breq2 |
⊢ ( ( 𝑝 𝐷 𝑀 ) = 𝑅 → ( 0 ≤ ( 𝑝 𝐷 𝑀 ) ↔ 0 ≤ 𝑅 ) ) |
| 59 |
57 58
|
syl5ibcom |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝑝 𝐷 𝑀 ) = 𝑅 → 0 ≤ 𝑅 ) ) |
| 60 |
59
|
con3d |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ∧ 𝑝 ∈ 𝑃 ) → ( ¬ 0 ≤ 𝑅 → ¬ ( 𝑝 𝐷 𝑀 ) = 𝑅 ) ) |
| 61 |
60
|
impancom |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ∧ ¬ 0 ≤ 𝑅 ) → ( 𝑝 ∈ 𝑃 → ¬ ( 𝑝 𝐷 𝑀 ) = 𝑅 ) ) |
| 62 |
61
|
imp |
⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ∧ ¬ 0 ≤ 𝑅 ) ∧ 𝑝 ∈ 𝑃 ) → ¬ ( 𝑝 𝐷 𝑀 ) = 𝑅 ) |
| 63 |
62
|
ralrimiva |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ∧ ¬ 0 ≤ 𝑅 ) → ∀ 𝑝 ∈ 𝑃 ¬ ( 𝑝 𝐷 𝑀 ) = 𝑅 ) |
| 64 |
|
eqcom |
⊢ ( ∅ = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 𝐷 𝑀 ) = 𝑅 } ↔ { 𝑝 ∈ 𝑃 ∣ ( 𝑝 𝐷 𝑀 ) = 𝑅 } = ∅ ) |
| 65 |
|
rabeq0 |
⊢ ( { 𝑝 ∈ 𝑃 ∣ ( 𝑝 𝐷 𝑀 ) = 𝑅 } = ∅ ↔ ∀ 𝑝 ∈ 𝑃 ¬ ( 𝑝 𝐷 𝑀 ) = 𝑅 ) |
| 66 |
64 65
|
bitri |
⊢ ( ∅ = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 𝐷 𝑀 ) = 𝑅 } ↔ ∀ 𝑝 ∈ 𝑃 ¬ ( 𝑝 𝐷 𝑀 ) = 𝑅 ) |
| 67 |
63 66
|
sylibr |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ∧ ¬ 0 ≤ 𝑅 ) → ∅ = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 𝐷 𝑀 ) = 𝑅 } ) |
| 68 |
45 67
|
eqtrd |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) ∧ ¬ 0 ≤ 𝑅 ) → ( 𝑀 𝑆 𝑅 ) = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 𝐷 𝑀 ) = 𝑅 } ) |
| 69 |
68
|
expcom |
⊢ ( ¬ 0 ≤ 𝑅 → ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) → ( 𝑀 𝑆 𝑅 ) = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 𝐷 𝑀 ) = 𝑅 } ) ) |
| 70 |
28 69
|
pm2.61i |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ ) → ( 𝑀 𝑆 𝑅 ) = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 𝐷 𝑀 ) = 𝑅 } ) |