Metamath Proof Explorer


Theorem rrxsuppss

Description: Support of Euclidean vectors. (Contributed by Thierry Arnoux, 7-Jul-2019)

Ref Expression
Hypotheses rrxmval.1 𝑋 = { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 }
rrxf.1 ( 𝜑𝐹𝑋 )
Assertion rrxsuppss ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐼 )

Proof

Step Hyp Ref Expression
1 rrxmval.1 𝑋 = { ∈ ( ℝ ↑m 𝐼 ) ∣ finSupp 0 }
2 rrxf.1 ( 𝜑𝐹𝑋 )
3 suppssdm ( 𝐹 supp 0 ) ⊆ dom 𝐹
4 1 2 rrxf ( 𝜑𝐹 : 𝐼 ⟶ ℝ )
5 3 4 fssdm ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐼 )