Metamath Proof Explorer
Description: Support of Euclidean vectors. (Contributed by Thierry Arnoux, 7-Jul-2019)
|
|
Ref |
Expression |
|
Hypotheses |
rrxmval.1 |
⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
|
|
rrxf.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) |
|
Assertion |
rrxsuppss |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐼 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxmval.1 |
⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
rrxf.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) |
| 3 |
|
suppssdm |
⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 |
| 4 |
1 2
|
rrxf |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ℝ ) |
| 5 |
3 4
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐼 ) |