Step |
Hyp |
Ref |
Expression |
1 |
|
rrxval.r |
⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) |
2 |
|
elex |
⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ V ) |
3 |
|
oveq2 |
⊢ ( 𝑖 = 𝐼 → ( ℝfld freeLMod 𝑖 ) = ( ℝfld freeLMod 𝐼 ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝑖 = 𝐼 → ( toℂPreHil ‘ ( ℝfld freeLMod 𝑖 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
5 |
|
df-rrx |
⊢ ℝ^ = ( 𝑖 ∈ V ↦ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑖 ) ) ) |
6 |
|
fvex |
⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ∈ V |
7 |
4 5 6
|
fvmpt |
⊢ ( 𝐼 ∈ V → ( ℝ^ ‘ 𝐼 ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
8 |
2 7
|
syl |
⊢ ( 𝐼 ∈ 𝑉 → ( ℝ^ ‘ 𝐼 ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
9 |
1 8
|
syl5eq |
⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |