Metamath Proof Explorer


Theorem rrxvsca

Description: The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023)

Ref Expression
Hypotheses rrxval.r 𝐻 = ( ℝ^ ‘ 𝐼 )
rrxbase.b 𝐵 = ( Base ‘ 𝐻 )
rrxvsca.r = ( ·𝑠𝐻 )
rrxvsca.i ( 𝜑𝐼𝑉 )
rrxvsca.j ( 𝜑𝐽𝐼 )
rrxvsca.a ( 𝜑𝐴 ∈ ℝ )
rrxvsca.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐻 ) )
Assertion rrxvsca ( 𝜑 → ( ( 𝐴 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 rrxval.r 𝐻 = ( ℝ^ ‘ 𝐼 )
2 rrxbase.b 𝐵 = ( Base ‘ 𝐻 )
3 rrxvsca.r = ( ·𝑠𝐻 )
4 rrxvsca.i ( 𝜑𝐼𝑉 )
5 rrxvsca.j ( 𝜑𝐽𝐼 )
6 rrxvsca.a ( 𝜑𝐴 ∈ ℝ )
7 rrxvsca.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐻 ) )
8 1 rrxval ( 𝐼𝑉𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) )
9 4 8 syl ( 𝜑𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) )
10 9 fveq2d ( 𝜑 → ( ·𝑠𝐻 ) = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) )
11 3 10 syl5eq ( 𝜑 = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) )
12 11 oveqd ( 𝜑 → ( 𝐴 𝑋 ) = ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) )
13 12 fveq1d ( 𝜑 → ( ( 𝐴 𝑋 ) ‘ 𝐽 ) = ( ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ‘ 𝐽 ) )
14 eqid ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 )
15 eqid ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) )
16 rebase ℝ = ( Base ‘ ℝfld )
17 9 fveq2d ( 𝜑 → ( Base ‘ 𝐻 ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) )
18 eqid ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) )
19 18 15 tcphbas ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) )
20 17 19 eqtr4di ( 𝜑 → ( Base ‘ 𝐻 ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) )
21 7 20 eleqtrd ( 𝜑𝑋 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) )
22 eqid ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) )
23 18 22 tcphvsca ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) )
24 23 eqcomi ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) )
25 remulr · = ( .r ‘ ℝfld )
26 14 15 16 4 6 21 5 24 25 frlmvscaval ( 𝜑 → ( ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋𝐽 ) ) )
27 13 26 eqtrd ( 𝜑 → ( ( 𝐴 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋𝐽 ) ) )