Description: The span of the zero element is the zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcl.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
| rsp0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | rsp0 | ⊢ ( 𝑅 ∈ Ring → ( 𝐾 ‘ { 0 } ) = { 0 } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rspcl.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
| 2 | rsp0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
| 4 | rlm0 | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 5 | 2 4 | eqtri | ⊢ 0 = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) | 
| 6 | rspval | ⊢ ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 7 | 1 6 | eqtri | ⊢ 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) | 
| 8 | 5 7 | lspsn0 | ⊢ ( ( ringLMod ‘ 𝑅 ) ∈ LMod → ( 𝐾 ‘ { 0 } ) = { 0 } ) | 
| 9 | 3 8 | syl | ⊢ ( 𝑅 ∈ Ring → ( 𝐾 ‘ { 0 } ) = { 0 } ) |