Metamath Proof Explorer


Theorem rsp0

Description: The span of the zero element is the zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses rspcl.k 𝐾 = ( RSpan ‘ 𝑅 )
rsp0.z 0 = ( 0g𝑅 )
Assertion rsp0 ( 𝑅 ∈ Ring → ( 𝐾 ‘ { 0 } ) = { 0 } )

Proof

Step Hyp Ref Expression
1 rspcl.k 𝐾 = ( RSpan ‘ 𝑅 )
2 rsp0.z 0 = ( 0g𝑅 )
3 rlmlmod ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod )
4 rlm0 ( 0g𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) )
5 2 4 eqtri 0 = ( 0g ‘ ( ringLMod ‘ 𝑅 ) )
6 rspval ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) )
7 1 6 eqtri 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) )
8 5 7 lspsn0 ( ( ringLMod ‘ 𝑅 ) ∈ LMod → ( 𝐾 ‘ { 0 } ) = { 0 } )
9 3 8 syl ( 𝑅 ∈ Ring → ( 𝐾 ‘ { 0 } ) = { 0 } )