Step |
Hyp |
Ref |
Expression |
1 |
|
rspcl.k |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
2 |
|
rspcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
rsp1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
2 3
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
5 |
4
|
snssd |
⊢ ( 𝑅 ∈ Ring → { 1 } ⊆ 𝐵 ) |
6 |
1 2
|
rspssid |
⊢ ( ( 𝑅 ∈ Ring ∧ { 1 } ⊆ 𝐵 ) → { 1 } ⊆ ( 𝐾 ‘ { 1 } ) ) |
7 |
5 6
|
mpdan |
⊢ ( 𝑅 ∈ Ring → { 1 } ⊆ ( 𝐾 ‘ { 1 } ) ) |
8 |
3
|
fvexi |
⊢ 1 ∈ V |
9 |
8
|
snss |
⊢ ( 1 ∈ ( 𝐾 ‘ { 1 } ) ↔ { 1 } ⊆ ( 𝐾 ‘ { 1 } ) ) |
10 |
7 9
|
sylibr |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( 𝐾 ‘ { 1 } ) ) |
11 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
12 |
1 2 11
|
rspcl |
⊢ ( ( 𝑅 ∈ Ring ∧ { 1 } ⊆ 𝐵 ) → ( 𝐾 ‘ { 1 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
13 |
5 12
|
mpdan |
⊢ ( 𝑅 ∈ Ring → ( 𝐾 ‘ { 1 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
14 |
11 2 3
|
lidl1el |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐾 ‘ { 1 } ) ∈ ( LIdeal ‘ 𝑅 ) ) → ( 1 ∈ ( 𝐾 ‘ { 1 } ) ↔ ( 𝐾 ‘ { 1 } ) = 𝐵 ) ) |
15 |
13 14
|
mpdan |
⊢ ( 𝑅 ∈ Ring → ( 1 ∈ ( 𝐾 ‘ { 1 } ) ↔ ( 𝐾 ‘ { 1 } ) = 𝐵 ) ) |
16 |
10 15
|
mpbid |
⊢ ( 𝑅 ∈ Ring → ( 𝐾 ‘ { 1 } ) = 𝐵 ) |