Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005) (Revised by Mario Carneiro, 11-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspc.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| rspc.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | rspc | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | rspc.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜑 ) ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 5 | nfv | ⊢ Ⅎ 𝑥 𝐴 ∈ 𝐵 | |
| 6 | 5 1 | nfim | ⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝐵 → 𝜓 ) |
| 7 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 8 | 7 2 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) |
| 9 | 4 6 8 | spcgf | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜑 ) → ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) |
| 10 | 9 | pm2.43a | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜑 ) → 𝜓 ) ) |
| 11 | 3 10 | biimtrid | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → 𝜓 ) ) |