Metamath Proof Explorer


Theorem rspc2

Description: Restricted specialization with two quantifiers, using implicit substitution. (Contributed by NM, 9-Nov-2012)

Ref Expression
Hypotheses rspc2.1 𝑥 𝜒
rspc2.2 𝑦 𝜓
rspc2.3 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
rspc2.4 ( 𝑦 = 𝐵 → ( 𝜒𝜓 ) )
Assertion rspc2 ( ( 𝐴𝐶𝐵𝐷 ) → ( ∀ 𝑥𝐶𝑦𝐷 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 rspc2.1 𝑥 𝜒
2 rspc2.2 𝑦 𝜓
3 rspc2.3 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
4 rspc2.4 ( 𝑦 = 𝐵 → ( 𝜒𝜓 ) )
5 nfcv 𝑥 𝐷
6 5 1 nfralw 𝑥𝑦𝐷 𝜒
7 3 ralbidv ( 𝑥 = 𝐴 → ( ∀ 𝑦𝐷 𝜑 ↔ ∀ 𝑦𝐷 𝜒 ) )
8 6 7 rspc ( 𝐴𝐶 → ( ∀ 𝑥𝐶𝑦𝐷 𝜑 → ∀ 𝑦𝐷 𝜒 ) )
9 2 4 rspc ( 𝐵𝐷 → ( ∀ 𝑦𝐷 𝜒𝜓 ) )
10 8 9 sylan9 ( ( 𝐴𝐶𝐵𝐷 ) → ( ∀ 𝑥𝐶𝑦𝐷 𝜑𝜓 ) )