Description: Restricted specialization with two quantifiers, using implicit substitution. (Contributed by NM, 9-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rspc2.1 | ⊢ Ⅎ 𝑥 𝜒 | |
rspc2.2 | ⊢ Ⅎ 𝑦 𝜓 | ||
rspc2.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | ||
rspc2.4 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜓 ) ) | ||
Assertion | rspc2 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜑 → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2.1 | ⊢ Ⅎ 𝑥 𝜒 | |
2 | rspc2.2 | ⊢ Ⅎ 𝑦 𝜓 | |
3 | rspc2.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | |
4 | rspc2.4 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜓 ) ) | |
5 | nfcv | ⊢ Ⅎ 𝑥 𝐷 | |
6 | 5 1 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐷 𝜒 |
7 | 3 | ralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝐷 𝜑 ↔ ∀ 𝑦 ∈ 𝐷 𝜒 ) ) |
8 | 6 7 | rspc | ⊢ ( 𝐴 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑦 ∈ 𝐷 𝜒 ) ) |
9 | 2 4 | rspc | ⊢ ( 𝐵 ∈ 𝐷 → ( ∀ 𝑦 ∈ 𝐷 𝜒 → 𝜓 ) ) |
10 | 8 9 | sylan9 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜑 → 𝜓 ) ) |