Metamath Proof Explorer
Description: 2-variable restricted specialization, using implicit substitution.
(Contributed by Scott Fenton, 6-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
rspc2dv.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) |
|
|
rspc2dv.2 |
⊢ ( 𝑦 = 𝐵 → ( 𝜃 ↔ 𝜒 ) ) |
|
|
rspc2dv.3 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜓 ) |
|
|
rspc2dv.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
|
|
rspc2dv.5 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
|
Assertion |
rspc2dv |
⊢ ( 𝜑 → 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rspc2dv.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) |
2 |
|
rspc2dv.2 |
⊢ ( 𝑦 = 𝐵 → ( 𝜃 ↔ 𝜒 ) ) |
3 |
|
rspc2dv.3 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜓 ) |
4 |
|
rspc2dv.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
5 |
|
rspc2dv.5 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
6 |
1 2
|
rspc2va |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜓 ) → 𝜒 ) |
7 |
4 5 3 6
|
syl21anc |
⊢ ( 𝜑 → 𝜒 ) |