Metamath Proof Explorer


Theorem rspc2dv

Description: 2-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 6-Mar-2025)

Ref Expression
Hypotheses rspc2dv.1 ( 𝑥 = 𝐴 → ( 𝜓𝜃 ) )
rspc2dv.2 ( 𝑦 = 𝐵 → ( 𝜃𝜒 ) )
rspc2dv.3 ( 𝜑 → ∀ 𝑥𝐶𝑦𝐷 𝜓 )
rspc2dv.4 ( 𝜑𝐴𝐶 )
rspc2dv.5 ( 𝜑𝐵𝐷 )
Assertion rspc2dv ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 rspc2dv.1 ( 𝑥 = 𝐴 → ( 𝜓𝜃 ) )
2 rspc2dv.2 ( 𝑦 = 𝐵 → ( 𝜃𝜒 ) )
3 rspc2dv.3 ( 𝜑 → ∀ 𝑥𝐶𝑦𝐷 𝜓 )
4 rspc2dv.4 ( 𝜑𝐴𝐶 )
5 rspc2dv.5 ( 𝜑𝐵𝐷 )
6 1 2 rspc2va ( ( ( 𝐴𝐶𝐵𝐷 ) ∧ ∀ 𝑥𝐶𝑦𝐷 𝜓 ) → 𝜒 )
7 4 5 3 6 syl21anc ( 𝜑𝜒 )