Metamath Proof Explorer


Theorem rspc2gv

Description: Restricted specialization with two quantifiers, using implicit substitution. (Contributed by BJ, 2-Dec-2021)

Ref Expression
Hypothesis rspc2gv.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
Assertion rspc2gv ( ( 𝐴𝑉𝐵𝑊 ) → ( ∀ 𝑥𝑉𝑦𝑊 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 rspc2gv.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
2 df-ral ( ∀ 𝑥𝑉𝑦𝑊 𝜑 ↔ ∀ 𝑥 ( 𝑥𝑉 → ∀ 𝑦𝑊 𝜑 ) )
3 df-ral ( ∀ 𝑦𝑊 𝜑 ↔ ∀ 𝑦 ( 𝑦𝑊𝜑 ) )
4 3 imbi2i ( ( 𝑥𝑉 → ∀ 𝑦𝑊 𝜑 ) ↔ ( 𝑥𝑉 → ∀ 𝑦 ( 𝑦𝑊𝜑 ) ) )
5 4 albii ( ∀ 𝑥 ( 𝑥𝑉 → ∀ 𝑦𝑊 𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝑉 → ∀ 𝑦 ( 𝑦𝑊𝜑 ) ) )
6 19.21v ( ∀ 𝑦 ( 𝑥𝑉 → ( 𝑦𝑊𝜑 ) ) ↔ ( 𝑥𝑉 → ∀ 𝑦 ( 𝑦𝑊𝜑 ) ) )
7 6 bicomi ( ( 𝑥𝑉 → ∀ 𝑦 ( 𝑦𝑊𝜑 ) ) ↔ ∀ 𝑦 ( 𝑥𝑉 → ( 𝑦𝑊𝜑 ) ) )
8 7 albii ( ∀ 𝑥 ( 𝑥𝑉 → ∀ 𝑦 ( 𝑦𝑊𝜑 ) ) ↔ ∀ 𝑥𝑦 ( 𝑥𝑉 → ( 𝑦𝑊𝜑 ) ) )
9 impexp ( ( ( 𝑥𝑉𝑦𝑊 ) → 𝜑 ) ↔ ( 𝑥𝑉 → ( 𝑦𝑊𝜑 ) ) )
10 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝑉𝐴𝑉 ) )
11 eleq1 ( 𝑦 = 𝐵 → ( 𝑦𝑊𝐵𝑊 ) )
12 10 11 bi2anan9 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ( 𝑥𝑉𝑦𝑊 ) ↔ ( 𝐴𝑉𝐵𝑊 ) ) )
13 12 1 imbi12d ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ( ( 𝑥𝑉𝑦𝑊 ) → 𝜑 ) ↔ ( ( 𝐴𝑉𝐵𝑊 ) → 𝜓 ) ) )
14 9 13 bitr3id ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ( 𝑥𝑉 → ( 𝑦𝑊𝜑 ) ) ↔ ( ( 𝐴𝑉𝐵𝑊 ) → 𝜓 ) ) )
15 14 spc2gv ( ( 𝐴𝑉𝐵𝑊 ) → ( ∀ 𝑥𝑦 ( 𝑥𝑉 → ( 𝑦𝑊𝜑 ) ) → ( ( 𝐴𝑉𝐵𝑊 ) → 𝜓 ) ) )
16 15 pm2.43a ( ( 𝐴𝑉𝐵𝑊 ) → ( ∀ 𝑥𝑦 ( 𝑥𝑉 → ( 𝑦𝑊𝜑 ) ) → 𝜓 ) )
17 8 16 syl5bi ( ( 𝐴𝑉𝐵𝑊 ) → ( ∀ 𝑥 ( 𝑥𝑉 → ∀ 𝑦 ( 𝑦𝑊𝜑 ) ) → 𝜓 ) )
18 5 17 syl5bi ( ( 𝐴𝑉𝐵𝑊 ) → ( ∀ 𝑥 ( 𝑥𝑉 → ∀ 𝑦𝑊 𝜑 ) → 𝜓 ) )
19 2 18 syl5bi ( ( 𝐴𝑉𝐵𝑊 ) → ( ∀ 𝑥𝑉𝑦𝑊 𝜑𝜓 ) )