| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rspc2gv.1 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑊 𝜑  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑉  →  ∀ 𝑦  ∈  𝑊 𝜑 ) ) | 
						
							| 3 |  | df-ral | ⊢ ( ∀ 𝑦  ∈  𝑊 𝜑  ↔  ∀ 𝑦 ( 𝑦  ∈  𝑊  →  𝜑 ) ) | 
						
							| 4 | 3 | imbi2i | ⊢ ( ( 𝑥  ∈  𝑉  →  ∀ 𝑦  ∈  𝑊 𝜑 )  ↔  ( 𝑥  ∈  𝑉  →  ∀ 𝑦 ( 𝑦  ∈  𝑊  →  𝜑 ) ) ) | 
						
							| 5 | 4 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝑉  →  ∀ 𝑦  ∈  𝑊 𝜑 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑉  →  ∀ 𝑦 ( 𝑦  ∈  𝑊  →  𝜑 ) ) ) | 
						
							| 6 |  | 19.21v | ⊢ ( ∀ 𝑦 ( 𝑥  ∈  𝑉  →  ( 𝑦  ∈  𝑊  →  𝜑 ) )  ↔  ( 𝑥  ∈  𝑉  →  ∀ 𝑦 ( 𝑦  ∈  𝑊  →  𝜑 ) ) ) | 
						
							| 7 | 6 | bicomi | ⊢ ( ( 𝑥  ∈  𝑉  →  ∀ 𝑦 ( 𝑦  ∈  𝑊  →  𝜑 ) )  ↔  ∀ 𝑦 ( 𝑥  ∈  𝑉  →  ( 𝑦  ∈  𝑊  →  𝜑 ) ) ) | 
						
							| 8 | 7 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝑉  →  ∀ 𝑦 ( 𝑦  ∈  𝑊  →  𝜑 ) )  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥  ∈  𝑉  →  ( 𝑦  ∈  𝑊  →  𝜑 ) ) ) | 
						
							| 9 |  | impexp | ⊢ ( ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑊 )  →  𝜑 )  ↔  ( 𝑥  ∈  𝑉  →  ( 𝑦  ∈  𝑊  →  𝜑 ) ) ) | 
						
							| 10 |  | eleq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∈  𝑉  ↔  𝐴  ∈  𝑉 ) ) | 
						
							| 11 |  | eleq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  ∈  𝑊  ↔  𝐵  ∈  𝑊 ) ) | 
						
							| 12 | 10 11 | bi2anan9 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑊 )  ↔  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) ) ) | 
						
							| 13 | 12 1 | imbi12d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑊 )  →  𝜑 )  ↔  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  𝜓 ) ) ) | 
						
							| 14 | 9 13 | bitr3id | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( ( 𝑥  ∈  𝑉  →  ( 𝑦  ∈  𝑊  →  𝜑 ) )  ↔  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  𝜓 ) ) ) | 
						
							| 15 | 14 | spc2gv | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝑥  ∈  𝑉  →  ( 𝑦  ∈  𝑊  →  𝜑 ) )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  𝜓 ) ) ) | 
						
							| 16 | 15 | pm2.43a | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝑥  ∈  𝑉  →  ( 𝑦  ∈  𝑊  →  𝜑 ) )  →  𝜓 ) ) | 
						
							| 17 | 8 16 | biimtrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∀ 𝑥 ( 𝑥  ∈  𝑉  →  ∀ 𝑦 ( 𝑦  ∈  𝑊  →  𝜑 ) )  →  𝜓 ) ) | 
						
							| 18 | 5 17 | biimtrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∀ 𝑥 ( 𝑥  ∈  𝑉  →  ∀ 𝑦  ∈  𝑊 𝜑 )  →  𝜓 ) ) | 
						
							| 19 | 2 18 | biimtrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑊 𝜑  →  𝜓 ) ) |