Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspc2v.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | |
| rspc2v.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜓 ) ) | ||
| Assertion | rspc2v | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | rspc2v.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜓 ) ) | |
| 3 | 1 | ralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝐷 𝜑 ↔ ∀ 𝑦 ∈ 𝐷 𝜒 ) ) |
| 4 | 3 | rspcv | ⊢ ( 𝐴 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑦 ∈ 𝐷 𝜒 ) ) |
| 5 | 2 | rspcv | ⊢ ( 𝐵 ∈ 𝐷 → ( ∀ 𝑦 ∈ 𝐷 𝜒 → 𝜓 ) ) |
| 6 | 4 5 | sylan9 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜑 → 𝜓 ) ) |