Metamath Proof Explorer


Theorem rspc2va

Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014)

Ref Expression
Hypotheses rspc2v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
rspc2v.2 ( 𝑦 = 𝐵 → ( 𝜒𝜓 ) )
Assertion rspc2va ( ( ( 𝐴𝐶𝐵𝐷 ) ∧ ∀ 𝑥𝐶𝑦𝐷 𝜑 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 rspc2v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
2 rspc2v.2 ( 𝑦 = 𝐵 → ( 𝜒𝜓 ) )
3 1 2 rspc2v ( ( 𝐴𝐶𝐵𝐷 ) → ( ∀ 𝑥𝐶𝑦𝐷 𝜑𝜓 ) )
4 3 imp ( ( ( 𝐴𝐶𝐵𝐷 ) ∧ ∀ 𝑥𝐶𝑦𝐷 𝜑 ) → 𝜓 )