Metamath Proof Explorer
Description: 2-variable restricted specialization, using implicit substitution.
(Contributed by NM, 18-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
rspc2v.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
|
|
rspc2v.2 |
⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜓 ) ) |
|
Assertion |
rspc2va |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜑 ) → 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rspc2v.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
2 |
|
rspc2v.2 |
⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜓 ) ) |
3 |
1 2
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜑 → 𝜓 ) ) |
4 |
3
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜑 ) → 𝜓 ) |