| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rspc2vd.a | ⊢ ( 𝑥  =  𝐴  →  ( 𝜃  ↔  𝜒 ) ) | 
						
							| 2 |  | rspc2vd.b | ⊢ ( 𝑦  =  𝐵  →  ( 𝜒  ↔  𝜓 ) ) | 
						
							| 3 |  | rspc2vd.c | ⊢ ( 𝜑  →  𝐴  ∈  𝐶 ) | 
						
							| 4 |  | rspc2vd.d | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  𝐷  =  𝐸 ) | 
						
							| 5 |  | rspc2vd.e | ⊢ ( 𝜑  →  𝐵  ∈  𝐸 ) | 
						
							| 6 | 3 4 | csbied | ⊢ ( 𝜑  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  =  𝐸 ) | 
						
							| 7 | 5 6 | eleqtrrd | ⊢ ( 𝜑  →  𝐵  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) | 
						
							| 8 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝐴  /  𝑥 ⦌ 𝐷 | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑥 𝜒 | 
						
							| 10 | 8 9 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 𝜒 | 
						
							| 11 |  | csbeq1a | ⊢ ( 𝑥  =  𝐴  →  𝐷  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) | 
						
							| 12 | 11 1 | raleqbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∀ 𝑦  ∈  𝐷 𝜃  ↔  ∀ 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 𝜒 ) ) | 
						
							| 13 | 10 12 | rspc | ⊢ ( 𝐴  ∈  𝐶  →  ( ∀ 𝑥  ∈  𝐶 ∀ 𝑦  ∈  𝐷 𝜃  →  ∀ 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 𝜒 ) ) | 
						
							| 14 | 3 13 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐶 ∀ 𝑦  ∈  𝐷 𝜃  →  ∀ 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 𝜒 ) ) | 
						
							| 15 | 2 | rspcv | ⊢ ( 𝐵  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  →  ( ∀ 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 𝜒  →  𝜓 ) ) | 
						
							| 16 | 7 14 15 | sylsyld | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐶 ∀ 𝑦  ∈  𝐷 𝜃  →  𝜓 ) ) |