Metamath Proof Explorer


Theorem rspc3ev

Description: 3-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012)

Ref Expression
Hypotheses rspc3v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
rspc3v.2 ( 𝑦 = 𝐵 → ( 𝜒𝜃 ) )
rspc3v.3 ( 𝑧 = 𝐶 → ( 𝜃𝜓 ) )
Assertion rspc3ev ( ( ( 𝐴𝑅𝐵𝑆𝐶𝑇 ) ∧ 𝜓 ) → ∃ 𝑥𝑅𝑦𝑆𝑧𝑇 𝜑 )

Proof

Step Hyp Ref Expression
1 rspc3v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
2 rspc3v.2 ( 𝑦 = 𝐵 → ( 𝜒𝜃 ) )
3 rspc3v.3 ( 𝑧 = 𝐶 → ( 𝜃𝜓 ) )
4 simpl1 ( ( ( 𝐴𝑅𝐵𝑆𝐶𝑇 ) ∧ 𝜓 ) → 𝐴𝑅 )
5 simpl2 ( ( ( 𝐴𝑅𝐵𝑆𝐶𝑇 ) ∧ 𝜓 ) → 𝐵𝑆 )
6 3 rspcev ( ( 𝐶𝑇𝜓 ) → ∃ 𝑧𝑇 𝜃 )
7 6 3ad2antl3 ( ( ( 𝐴𝑅𝐵𝑆𝐶𝑇 ) ∧ 𝜓 ) → ∃ 𝑧𝑇 𝜃 )
8 1 rexbidv ( 𝑥 = 𝐴 → ( ∃ 𝑧𝑇 𝜑 ↔ ∃ 𝑧𝑇 𝜒 ) )
9 2 rexbidv ( 𝑦 = 𝐵 → ( ∃ 𝑧𝑇 𝜒 ↔ ∃ 𝑧𝑇 𝜃 ) )
10 8 9 rspc2ev ( ( 𝐴𝑅𝐵𝑆 ∧ ∃ 𝑧𝑇 𝜃 ) → ∃ 𝑥𝑅𝑦𝑆𝑧𝑇 𝜑 )
11 4 5 7 10 syl3anc ( ( ( 𝐴𝑅𝐵𝑆𝐶𝑇 ) ∧ 𝜓 ) → ∃ 𝑥𝑅𝑦𝑆𝑧𝑇 𝜑 )