Step |
Hyp |
Ref |
Expression |
1 |
|
rspc3v.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
2 |
|
rspc3v.2 |
⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) |
3 |
|
rspc3v.3 |
⊢ ( 𝑧 = 𝐶 → ( 𝜃 ↔ 𝜓 ) ) |
4 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ 𝜓 ) → 𝐴 ∈ 𝑅 ) |
5 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ 𝜓 ) → 𝐵 ∈ 𝑆 ) |
6 |
3
|
rspcev |
⊢ ( ( 𝐶 ∈ 𝑇 ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝑇 𝜃 ) |
7 |
6
|
3ad2antl3 |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝑇 𝜃 ) |
8 |
1
|
rexbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑧 ∈ 𝑇 𝜑 ↔ ∃ 𝑧 ∈ 𝑇 𝜒 ) ) |
9 |
2
|
rexbidv |
⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑧 ∈ 𝑇 𝜒 ↔ ∃ 𝑧 ∈ 𝑇 𝜃 ) ) |
10 |
8 9
|
rspc2ev |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝑇 𝜃 ) → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ∃ 𝑧 ∈ 𝑇 𝜑 ) |
11 |
4 5 7 10
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ 𝜓 ) → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ∃ 𝑧 ∈ 𝑇 𝜑 ) |