Metamath Proof Explorer


Theorem rspc4v

Description: 4-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 7-Feb-2025)

Ref Expression
Hypotheses rspc4v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
rspc4v.2 ( 𝑦 = 𝐵 → ( 𝜒𝜃 ) )
rspc4v.3 ( 𝑧 = 𝐶 → ( 𝜃𝜏 ) )
rspc4v.4 ( 𝑤 = 𝐷 → ( 𝜏𝜓 ) )
Assertion rspc4v ( ( ( 𝐴𝑅𝐵𝑆 ) ∧ ( 𝐶𝑇𝐷𝑈 ) ) → ( ∀ 𝑥𝑅𝑦𝑆𝑧𝑇𝑤𝑈 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 rspc4v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
2 rspc4v.2 ( 𝑦 = 𝐵 → ( 𝜒𝜃 ) )
3 rspc4v.3 ( 𝑧 = 𝐶 → ( 𝜃𝜏 ) )
4 rspc4v.4 ( 𝑤 = 𝐷 → ( 𝜏𝜓 ) )
5 df-3an ( ( 𝐴𝑅𝐵𝑆𝐶𝑇 ) ↔ ( ( 𝐴𝑅𝐵𝑆 ) ∧ 𝐶𝑇 ) )
6 1 ralbidv ( 𝑥 = 𝐴 → ( ∀ 𝑤𝑈 𝜑 ↔ ∀ 𝑤𝑈 𝜒 ) )
7 2 ralbidv ( 𝑦 = 𝐵 → ( ∀ 𝑤𝑈 𝜒 ↔ ∀ 𝑤𝑈 𝜃 ) )
8 3 ralbidv ( 𝑧 = 𝐶 → ( ∀ 𝑤𝑈 𝜃 ↔ ∀ 𝑤𝑈 𝜏 ) )
9 6 7 8 rspc3v ( ( 𝐴𝑅𝐵𝑆𝐶𝑇 ) → ( ∀ 𝑥𝑅𝑦𝑆𝑧𝑇𝑤𝑈 𝜑 → ∀ 𝑤𝑈 𝜏 ) )
10 4 rspcv ( 𝐷𝑈 → ( ∀ 𝑤𝑈 𝜏𝜓 ) )
11 9 10 sylan9 ( ( ( 𝐴𝑅𝐵𝑆𝐶𝑇 ) ∧ 𝐷𝑈 ) → ( ∀ 𝑥𝑅𝑦𝑆𝑧𝑇𝑤𝑈 𝜑𝜓 ) )
12 5 11 sylanbr ( ( ( ( 𝐴𝑅𝐵𝑆 ) ∧ 𝐶𝑇 ) ∧ 𝐷𝑈 ) → ( ∀ 𝑥𝑅𝑦𝑆𝑧𝑇𝑤𝑈 𝜑𝜓 ) )
13 12 anasss ( ( ( 𝐴𝑅𝐵𝑆 ) ∧ ( 𝐶𝑇𝐷𝑈 ) ) → ( ∀ 𝑥𝑅𝑦𝑆𝑧𝑇𝑤𝑈 𝜑𝜓 ) )