Step |
Hyp |
Ref |
Expression |
1 |
|
rspc4v.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
2 |
|
rspc4v.2 |
⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) |
3 |
|
rspc4v.3 |
⊢ ( 𝑧 = 𝐶 → ( 𝜃 ↔ 𝜏 ) ) |
4 |
|
rspc4v.4 |
⊢ ( 𝑤 = 𝐷 → ( 𝜏 ↔ 𝜓 ) ) |
5 |
|
df-3an |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ↔ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑇 ) ) |
6 |
1
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑤 ∈ 𝑈 𝜑 ↔ ∀ 𝑤 ∈ 𝑈 𝜒 ) ) |
7 |
2
|
ralbidv |
⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑤 ∈ 𝑈 𝜒 ↔ ∀ 𝑤 ∈ 𝑈 𝜃 ) ) |
8 |
3
|
ralbidv |
⊢ ( 𝑧 = 𝐶 → ( ∀ 𝑤 ∈ 𝑈 𝜃 ↔ ∀ 𝑤 ∈ 𝑈 𝜏 ) ) |
9 |
6 7 8
|
rspc3v |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 𝜑 → ∀ 𝑤 ∈ 𝑈 𝜏 ) ) |
10 |
4
|
rspcv |
⊢ ( 𝐷 ∈ 𝑈 → ( ∀ 𝑤 ∈ 𝑈 𝜏 → 𝜓 ) ) |
11 |
9 10
|
sylan9 |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ 𝐷 ∈ 𝑈 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 𝜑 → 𝜓 ) ) |
12 |
5 11
|
sylanbr |
⊢ ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑇 ) ∧ 𝐷 ∈ 𝑈 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 𝜑 → 𝜓 ) ) |
13 |
12
|
anasss |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈 ) ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 𝜑 → 𝜓 ) ) |