Metamath Proof Explorer


Theorem rspc6v

Description: 6-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 20-Feb-2025)

Ref Expression
Hypotheses rspc6v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
rspc6v.2 ( 𝑦 = 𝐵 → ( 𝜒𝜃 ) )
rspc6v.3 ( 𝑧 = 𝐶 → ( 𝜃𝜏 ) )
rspc6v.4 ( 𝑤 = 𝐷 → ( 𝜏𝜂 ) )
rspc6v.5 ( 𝑝 = 𝐸 → ( 𝜂𝜁 ) )
rspc6v.6 ( 𝑞 = 𝐹 → ( 𝜁𝜓 ) )
Assertion rspc6v ( ( ( 𝐴𝑅𝐵𝑆 ) ∧ ( 𝐶𝑇𝐷𝑈 ) ∧ ( 𝐸𝑉𝐹𝑊 ) ) → ( ∀ 𝑥𝑅𝑦𝑆𝑧𝑇𝑤𝑈𝑝𝑉𝑞𝑊 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 rspc6v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
2 rspc6v.2 ( 𝑦 = 𝐵 → ( 𝜒𝜃 ) )
3 rspc6v.3 ( 𝑧 = 𝐶 → ( 𝜃𝜏 ) )
4 rspc6v.4 ( 𝑤 = 𝐷 → ( 𝜏𝜂 ) )
5 rspc6v.5 ( 𝑝 = 𝐸 → ( 𝜂𝜁 ) )
6 rspc6v.6 ( 𝑞 = 𝐹 → ( 𝜁𝜓 ) )
7 1 2ralbidv ( 𝑥 = 𝐴 → ( ∀ 𝑝𝑉𝑞𝑊 𝜑 ↔ ∀ 𝑝𝑉𝑞𝑊 𝜒 ) )
8 2 2ralbidv ( 𝑦 = 𝐵 → ( ∀ 𝑝𝑉𝑞𝑊 𝜒 ↔ ∀ 𝑝𝑉𝑞𝑊 𝜃 ) )
9 3 2ralbidv ( 𝑧 = 𝐶 → ( ∀ 𝑝𝑉𝑞𝑊 𝜃 ↔ ∀ 𝑝𝑉𝑞𝑊 𝜏 ) )
10 4 2ralbidv ( 𝑤 = 𝐷 → ( ∀ 𝑝𝑉𝑞𝑊 𝜏 ↔ ∀ 𝑝𝑉𝑞𝑊 𝜂 ) )
11 7 8 9 10 rspc4v ( ( ( 𝐴𝑅𝐵𝑆 ) ∧ ( 𝐶𝑇𝐷𝑈 ) ) → ( ∀ 𝑥𝑅𝑦𝑆𝑧𝑇𝑤𝑈𝑝𝑉𝑞𝑊 𝜑 → ∀ 𝑝𝑉𝑞𝑊 𝜂 ) )
12 5 6 rspc2v ( ( 𝐸𝑉𝐹𝑊 ) → ( ∀ 𝑝𝑉𝑞𝑊 𝜂𝜓 ) )
13 11 12 syl9 ( ( ( 𝐴𝑅𝐵𝑆 ) ∧ ( 𝐶𝑇𝐷𝑈 ) ) → ( ( 𝐸𝑉𝐹𝑊 ) → ( ∀ 𝑥𝑅𝑦𝑆𝑧𝑇𝑤𝑈𝑝𝑉𝑞𝑊 𝜑𝜓 ) ) )
14 13 3impia ( ( ( 𝐴𝑅𝐵𝑆 ) ∧ ( 𝐶𝑇𝐷𝑈 ) ∧ ( 𝐸𝑉𝐹𝑊 ) ) → ( ∀ 𝑥𝑅𝑦𝑆𝑧𝑇𝑤𝑈𝑝𝑉𝑞𝑊 𝜑𝜓 ) )