Step |
Hyp |
Ref |
Expression |
1 |
|
rspc6v.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
2 |
|
rspc6v.2 |
⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) |
3 |
|
rspc6v.3 |
⊢ ( 𝑧 = 𝐶 → ( 𝜃 ↔ 𝜏 ) ) |
4 |
|
rspc6v.4 |
⊢ ( 𝑤 = 𝐷 → ( 𝜏 ↔ 𝜂 ) ) |
5 |
|
rspc6v.5 |
⊢ ( 𝑝 = 𝐸 → ( 𝜂 ↔ 𝜁 ) ) |
6 |
|
rspc6v.6 |
⊢ ( 𝑞 = 𝐹 → ( 𝜁 ↔ 𝜓 ) ) |
7 |
1
|
2ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜑 ↔ ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜒 ) ) |
8 |
2
|
2ralbidv |
⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜒 ↔ ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜃 ) ) |
9 |
3
|
2ralbidv |
⊢ ( 𝑧 = 𝐶 → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜃 ↔ ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜏 ) ) |
10 |
4
|
2ralbidv |
⊢ ( 𝑤 = 𝐷 → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜏 ↔ ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜂 ) ) |
11 |
7 8 9 10
|
rspc4v |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈 ) ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜑 → ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜂 ) ) |
12 |
5 6
|
rspc2v |
⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ) → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜂 → 𝜓 ) ) |
13 |
11 12
|
syl9 |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈 ) ) → ( ( 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜑 → 𝜓 ) ) ) |
14 |
13
|
3impia |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈 ) ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ) ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜑 → 𝜓 ) ) |