Metamath Proof Explorer


Theorem rspc8v

Description: 8-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 20-Feb-2025)

Ref Expression
Hypotheses rspc8v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
rspc8v.2 ( 𝑦 = 𝐵 → ( 𝜒𝜃 ) )
rspc8v.3 ( 𝑧 = 𝐶 → ( 𝜃𝜏 ) )
rspc8v.4 ( 𝑤 = 𝐷 → ( 𝜏𝜂 ) )
rspc8v.5 ( 𝑝 = 𝐸 → ( 𝜂𝜁 ) )
rspc8v.6 ( 𝑞 = 𝐹 → ( 𝜁𝜎 ) )
rspc8v.7 ( 𝑟 = 𝐺 → ( 𝜎𝜌 ) )
rspc8v.8 ( 𝑠 = 𝐻 → ( 𝜌𝜓 ) )
Assertion rspc8v ( ( ( ( 𝐴𝑅𝐵𝑆 ) ∧ ( 𝐶𝑇𝐷𝑈 ) ) ∧ ( ( 𝐸𝑉𝐹𝑊 ) ∧ ( 𝐺𝑋𝐻𝑌 ) ) ) → ( ∀ 𝑥𝑅𝑦𝑆𝑧𝑇𝑤𝑈𝑝𝑉𝑞𝑊𝑟𝑋𝑠𝑌 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 rspc8v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
2 rspc8v.2 ( 𝑦 = 𝐵 → ( 𝜒𝜃 ) )
3 rspc8v.3 ( 𝑧 = 𝐶 → ( 𝜃𝜏 ) )
4 rspc8v.4 ( 𝑤 = 𝐷 → ( 𝜏𝜂 ) )
5 rspc8v.5 ( 𝑝 = 𝐸 → ( 𝜂𝜁 ) )
6 rspc8v.6 ( 𝑞 = 𝐹 → ( 𝜁𝜎 ) )
7 rspc8v.7 ( 𝑟 = 𝐺 → ( 𝜎𝜌 ) )
8 rspc8v.8 ( 𝑠 = 𝐻 → ( 𝜌𝜓 ) )
9 1 4ralbidv ( 𝑥 = 𝐴 → ( ∀ 𝑝𝑉𝑞𝑊𝑟𝑋𝑠𝑌 𝜑 ↔ ∀ 𝑝𝑉𝑞𝑊𝑟𝑋𝑠𝑌 𝜒 ) )
10 2 4ralbidv ( 𝑦 = 𝐵 → ( ∀ 𝑝𝑉𝑞𝑊𝑟𝑋𝑠𝑌 𝜒 ↔ ∀ 𝑝𝑉𝑞𝑊𝑟𝑋𝑠𝑌 𝜃 ) )
11 3 4ralbidv ( 𝑧 = 𝐶 → ( ∀ 𝑝𝑉𝑞𝑊𝑟𝑋𝑠𝑌 𝜃 ↔ ∀ 𝑝𝑉𝑞𝑊𝑟𝑋𝑠𝑌 𝜏 ) )
12 4 4ralbidv ( 𝑤 = 𝐷 → ( ∀ 𝑝𝑉𝑞𝑊𝑟𝑋𝑠𝑌 𝜏 ↔ ∀ 𝑝𝑉𝑞𝑊𝑟𝑋𝑠𝑌 𝜂 ) )
13 9 10 11 12 rspc4v ( ( ( 𝐴𝑅𝐵𝑆 ) ∧ ( 𝐶𝑇𝐷𝑈 ) ) → ( ∀ 𝑥𝑅𝑦𝑆𝑧𝑇𝑤𝑈𝑝𝑉𝑞𝑊𝑟𝑋𝑠𝑌 𝜑 → ∀ 𝑝𝑉𝑞𝑊𝑟𝑋𝑠𝑌 𝜂 ) )
14 5 6 7 8 rspc4v ( ( ( 𝐸𝑉𝐹𝑊 ) ∧ ( 𝐺𝑋𝐻𝑌 ) ) → ( ∀ 𝑝𝑉𝑞𝑊𝑟𝑋𝑠𝑌 𝜂𝜓 ) )
15 13 14 sylan9 ( ( ( ( 𝐴𝑅𝐵𝑆 ) ∧ ( 𝐶𝑇𝐷𝑈 ) ) ∧ ( ( 𝐸𝑉𝐹𝑊 ) ∧ ( 𝐺𝑋𝐻𝑌 ) ) ) → ( ∀ 𝑥𝑅𝑦𝑆𝑧𝑇𝑤𝑈𝑝𝑉𝑞𝑊𝑟𝑋𝑠𝑌 𝜑𝜓 ) )