Step |
Hyp |
Ref |
Expression |
1 |
|
rspc8v.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
2 |
|
rspc8v.2 |
⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) |
3 |
|
rspc8v.3 |
⊢ ( 𝑧 = 𝐶 → ( 𝜃 ↔ 𝜏 ) ) |
4 |
|
rspc8v.4 |
⊢ ( 𝑤 = 𝐷 → ( 𝜏 ↔ 𝜂 ) ) |
5 |
|
rspc8v.5 |
⊢ ( 𝑝 = 𝐸 → ( 𝜂 ↔ 𝜁 ) ) |
6 |
|
rspc8v.6 |
⊢ ( 𝑞 = 𝐹 → ( 𝜁 ↔ 𝜎 ) ) |
7 |
|
rspc8v.7 |
⊢ ( 𝑟 = 𝐺 → ( 𝜎 ↔ 𝜌 ) ) |
8 |
|
rspc8v.8 |
⊢ ( 𝑠 = 𝐻 → ( 𝜌 ↔ 𝜓 ) ) |
9 |
1
|
4ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜑 ↔ ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜒 ) ) |
10 |
2
|
4ralbidv |
⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜒 ↔ ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜃 ) ) |
11 |
3
|
4ralbidv |
⊢ ( 𝑧 = 𝐶 → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜃 ↔ ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜏 ) ) |
12 |
4
|
4ralbidv |
⊢ ( 𝑤 = 𝐷 → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜏 ↔ ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜂 ) ) |
13 |
9 10 11 12
|
rspc4v |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈 ) ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜑 → ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜂 ) ) |
14 |
5 6 7 8
|
rspc4v |
⊢ ( ( ( 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ) ∧ ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) ) → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜂 → 𝜓 ) ) |
15 |
13 14
|
sylan9 |
⊢ ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈 ) ) ∧ ( ( 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ) ∧ ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) ) ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜑 → 𝜓 ) ) |