Metamath Proof Explorer
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006)
|
|
Ref |
Expression |
|
Hypothesis |
rspcv.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
Assertion |
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝜑 → ( 𝐴 ∈ 𝐵 → 𝜓 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rspcv.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
1
|
rspcv |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → 𝜓 ) ) |
| 3 |
2
|
com12 |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝜑 → ( 𝐴 ∈ 𝐵 → 𝜓 ) ) |