Metamath Proof Explorer
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006) (Proof shortened by Andrew Salmon, 8-Jun-2011)
|
|
Ref |
Expression |
|
Hypothesis |
rspcv.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
Assertion |
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 𝜑 ∧ 𝐴 ∈ 𝐵 ) → 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rspcv.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
1
|
rspcv |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → 𝜓 ) ) |
3 |
2
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 𝜑 ∧ 𝐴 ∈ 𝐵 ) → 𝜓 ) |