Description: Restricted specialization, using implicit substitution. (Contributed by Emmett Weisz, 16-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcdf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| rspcdf.2 | ⊢ Ⅎ 𝑥 𝜒 | ||
| rspcdf.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | ||
| rspcdf.4 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | rspcdf | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 → 𝜒 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rspcdf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | rspcdf.2 | ⊢ Ⅎ 𝑥 𝜒 | |
| 3 | rspcdf.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 4 | rspcdf.4 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 5 | 4 | ex | ⊢ ( 𝜑 → ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) | 
| 6 | 1 5 | alrimi | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) | 
| 7 | 2 | rspct | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜓 → 𝜒 ) ) ) | 
| 8 | 6 3 7 | sylc | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 → 𝜒 ) ) |