Metamath Proof Explorer


Theorem rspcdf

Description: Restricted specialization, using implicit substitution. (Contributed by Emmett Weisz, 16-Jan-2020)

Ref Expression
Hypotheses rspcdf.1 𝑥 𝜑
rspcdf.2 𝑥 𝜒
rspcdf.3 ( 𝜑𝐴𝐵 )
rspcdf.4 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
Assertion rspcdf ( 𝜑 → ( ∀ 𝑥𝐵 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 rspcdf.1 𝑥 𝜑
2 rspcdf.2 𝑥 𝜒
3 rspcdf.3 ( 𝜑𝐴𝐵 )
4 rspcdf.4 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
5 4 ex ( 𝜑 → ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) ) )
6 1 5 alrimi ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) ) )
7 2 rspct ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) ) → ( 𝐴𝐵 → ( ∀ 𝑥𝐵 𝜓𝜒 ) ) )
8 6 3 7 sylc ( 𝜑 → ( ∀ 𝑥𝐵 𝜓𝜒 ) )