Metamath Proof Explorer


Theorem rspcdva

Description: Restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 21-Jun-2020)

Ref Expression
Hypotheses rspcdva.1 ( 𝑥 = 𝐶 → ( 𝜓𝜒 ) )
rspcdva.2 ( 𝜑 → ∀ 𝑥𝐴 𝜓 )
rspcdva.3 ( 𝜑𝐶𝐴 )
Assertion rspcdva ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 rspcdva.1 ( 𝑥 = 𝐶 → ( 𝜓𝜒 ) )
2 rspcdva.2 ( 𝜑 → ∀ 𝑥𝐴 𝜓 )
3 rspcdva.3 ( 𝜑𝐶𝐴 )
4 1 rspcv ( 𝐶𝐴 → ( ∀ 𝑥𝐴 𝜓𝜒 ) )
5 3 2 4 sylc ( 𝜑𝜒 )