Metamath Proof Explorer
Description: Restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 21-Jun-2020)
|
|
Ref |
Expression |
|
Hypotheses |
rspcdva.1 |
⊢ ( 𝑥 = 𝐶 → ( 𝜓 ↔ 𝜒 ) ) |
|
|
rspcdva.2 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |
|
|
rspcdva.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
|
Assertion |
rspcdva |
⊢ ( 𝜑 → 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rspcdva.1 |
⊢ ( 𝑥 = 𝐶 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
rspcdva.2 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |
3 |
|
rspcdva.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
4 |
1
|
rspcv |
⊢ ( 𝐶 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝜓 → 𝜒 ) ) |
5 |
3 2 4
|
sylc |
⊢ ( 𝜑 → 𝜒 ) |