Metamath Proof Explorer


Theorem rspce

Description: Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998) (Revised by Mario Carneiro, 11-Oct-2016)

Ref Expression
Hypotheses rspc.1 𝑥 𝜓
rspc.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion rspce ( ( 𝐴𝐵𝜓 ) → ∃ 𝑥𝐵 𝜑 )

Proof

Step Hyp Ref Expression
1 rspc.1 𝑥 𝜓
2 rspc.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 nfcv 𝑥 𝐴
4 nfv 𝑥 𝐴𝐵
5 4 1 nfan 𝑥 ( 𝐴𝐵𝜓 )
6 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝐴𝐵 ) )
7 6 2 anbi12d ( 𝑥 = 𝐴 → ( ( 𝑥𝐵𝜑 ) ↔ ( 𝐴𝐵𝜓 ) ) )
8 3 5 7 spcegf ( 𝐴𝐵 → ( ( 𝐴𝐵𝜓 ) → ∃ 𝑥 ( 𝑥𝐵𝜑 ) ) )
9 8 anabsi5 ( ( 𝐴𝐵𝜓 ) → ∃ 𝑥 ( 𝑥𝐵𝜑 ) )
10 df-rex ( ∃ 𝑥𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐵𝜑 ) )
11 9 10 sylibr ( ( 𝐴𝐵𝜓 ) → ∃ 𝑥𝐵 𝜑 )