Description: Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998) (Revised by Mario Carneiro, 11-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspc.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| rspc.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | rspce | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → ∃ 𝑥 ∈ 𝐵 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | rspc.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 4 | nfv | ⊢ Ⅎ 𝑥 𝐴 ∈ 𝐵 | |
| 5 | 4 1 | nfan | ⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) |
| 6 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 7 | 6 2 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 8 | 3 5 7 | spcegf | ⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 9 | 8 | anabsi5 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) |
| 10 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → ∃ 𝑥 ∈ 𝐵 𝜑 ) |