Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rspceaimv.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | rspceaimv | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐶 ( 𝜓 → 𝜒 ) ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 ( 𝜑 → 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspceaimv.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | 1 | imbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 → 𝜒 ) ↔ ( 𝜓 → 𝜒 ) ) ) |
3 | 2 | ralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝐶 ( 𝜑 → 𝜒 ) ↔ ∀ 𝑦 ∈ 𝐶 ( 𝜓 → 𝜒 ) ) ) |
4 | 3 | rspcev | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐶 ( 𝜓 → 𝜒 ) ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 ( 𝜑 → 𝜒 ) ) |