Metamath Proof Explorer


Theorem rspceaimv

Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022)

Ref Expression
Hypothesis rspceaimv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion rspceaimv ( ( 𝐴𝐵 ∧ ∀ 𝑦𝐶 ( 𝜓𝜒 ) ) → ∃ 𝑥𝐵𝑦𝐶 ( 𝜑𝜒 ) )

Proof

Step Hyp Ref Expression
1 rspceaimv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 1 imbi1d ( 𝑥 = 𝐴 → ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜒 ) ) )
3 2 ralbidv ( 𝑥 = 𝐴 → ( ∀ 𝑦𝐶 ( 𝜑𝜒 ) ↔ ∀ 𝑦𝐶 ( 𝜓𝜒 ) ) )
4 3 rspcev ( ( 𝐴𝐵 ∧ ∀ 𝑦𝐶 ( 𝜓𝜒 ) ) → ∃ 𝑥𝐵𝑦𝐶 ( 𝜑𝜒 ) )